排序算法稳定性和不稳定性的理解
稳定性初解
说到稳定性,与之对应就是不稳定性,那么排序算法的稳定性又为何意呢?通俗地讲就是,能保证排序前两个相等的数其在序列的前后位置顺序与排序后它们的前后位置顺序一致。形式化解释如下:一列数中,如果Ai = Aj,Ai位于Aj的前置位,那么经过升降序排序后Ai仍然位于Aj的前置位。
稳定性优劣
那么排序稳定性又有什么优势和劣势呢?首先优势应该是比较明显的,比如:1. 能够节约时间,稳定性算法会减少一次交换时间(但多了不交换这个限制后,稳定排序的冒泡/插入/选择都是O(n^2);而不稳定排序快排/堆排却是O(nlogn));2. 排序算法如果是稳定的,那么从一个键上排序,然后再从另一个键上排序,第一个键排序的结果可以为第二个键排序所用;
各排序算法稳定性分析
稳定性排序算法
(1)冒泡排序
冒泡排序就是把小的元素往前调或者把大的元素往后调。比较是相邻的两个元素比较,交换也发生在这两个元素之间。所以,如果两个元素相等,我想你是不会再无聊地把他们俩交换一下的;如果两个相等的元素没有相邻,那么即使通过前面的两两交换把两个相邻起来,这时候也不会交换,所以相同元素的前后顺序并没有改变,所以冒泡排序是一种稳定排序算法。
(2)插入排序
插入排序是在一个已经有序的小序列的基础上,一次插入一个元素。当然,刚开始这个有序的小序列只有1个元素,就是第一个元素。比较是从有序序列的末尾开始,也就是想要插入的元素和已经有序的最大者开始比起,如果比它大则直接插入在其后面,否则一直往前找直到找到它该插入的位置。如果碰见一个和插入元素相等的,那么插入元素把想插入的元素放在相等元素的后面。所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,所以插入排序是稳定的。
(3)归并排序
归并排序是在分解的子列中,有1个或2个元素时,1个元素不会交换,2个元素如果大小相等也不会交换。在序列合并的过程中,如果两个当前元素相等时,我们把处在前面的序列的元素保存在结果序列的前面,所以,归并排序也是稳定的。
(4)基数排序
基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序,最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。基数排序基于分别排序,分别收集,所以是稳定的。
不稳定排序算法
(1)简单选择排序
排序算法在一趟选择中,如果当前元素比一个元素小,而该小的元素又出现在一个和当前元素相等的元素后面,那么交换后稳定性就被破坏了。光说可能有点模糊,来看个小实例:858410,第一遍扫描,第1个元素8会和4交换,那么原序列中2个8的相对前后顺序和原序列不一致了,所以选择排序不稳定。
(2)快速排序
快速排序有两个方向,左边的i下标一直往右走,当a[i] <= a[center_index],其中center_index是中枢元素的数组下标,一般取为数组第0个元素。而右边的j下标一直往左走,当a[j] > a[center_index]。如果i和j都走不动了,i <= j,交换a[i]和a[j],重复上面的过程,直到i > j。 交换a[j]和a[center_index],完成一趟快速排序。在中枢元素和a[j]交换的时候,很有可能把前面的元素的稳定性打乱,比如序列为5 3 3 4 3 8 9 10 11,现在中枢元素5和3(第5个元素,下标从1开始计)交换就会把元素3的稳定性打乱,所以快速排序是一个不稳定的排序算法,不稳定发生在中枢元素和a[j] 交换的时刻。
(3)希尔排序
希尔排序是按照不同步长对元素进行插入排序,一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,稳定性就会被破坏,所以希尔排序不稳定。
(4)堆排序
堆排序的过程是从第n/2开始和其子节点共3个值选择最大(大顶堆)或者最小(小顶堆),这3个元素之间的选择当然不会破坏稳定性。但当为n/2-1, n/2-2, …这些父节点选择元素时,有可能第n/2个父节点交换把后面一个元素交换过去了,而第n/2-1个父节点把后面一个相同的元素没有交换,所以堆排序并不稳定。
注:各个排序算法的稳定性以及时间空间复杂度的图
原文链接:https://blog.csdn.net/zyf520china/article/details/58742214