算法【插入排序】
简介:
插入排序,一般也被称为直接插入排序。对于少量元素的排序,它是一个有效的算法。插入排序是一种最简单的排序方法,它的基本思想是将一个记录插入到已经排好序的有序表中,从而一个新的、记录数增1的有序表。在其实现过程使用双层循环,外层循环对除了第一个元素之外的所有元素,内层循环对当前元素前面有序表进行待插入位置查找,并进行移动。
思想
将一个记录插入到已排好序的序列中,从而得到一个新的有序序列(将序列的第一个数据看成是一个有序的子序列,然后从第二个记录逐个向该有序的子序列进行有序的插入,直至整个序列有序)。
重点:使用哨兵,用于临时存储和判断数组边界。
将乱序序列假设分为两部分
-
有序部分:序列中的第一个元素
-
无序部分:序列中非第一个元素
-
[3,6,4,2,7,1]
-
3是有序部分,剩下元素为无序部分
-
需要将无序部分的元素逐一的插入到有序部分中,最终变为有序序列
Python代码
def sort(alist):
for i in range(1,len(alist)):
while i > 0:
if alist[i] < alist[i-1]:
alist[i],alist[i-1] = alist[i-1],alist[i]
i -= 1
else:
break
return alist
alist = [9,8,7,6,5,4,3,2,1]
print(sort(alist))
>>>
[1, 2, 3, 4, 5, 6, 7, 8, 9]
时间复杂度
在插入排序中,当待排序数组是有序时,是最优的情况,只需当前数跟前一个数比较一下就可以了,这时一共需要比较N- 1次,时间复杂度为O(n)。
最坏的情况是待排序数组是逆序的,此时需要比较次数最多,总次数记为:1+2+3+…+N-1,所以,插入排序最坏情况下的时间复杂度为O(n^2)。
平均来说,A[1..j-1]中的一半元素小于A[j],一半元素大于A[j]。插入排序在平均情况运行时间与最坏情况运行时间一样,是输入规模的二次函数。
空间复杂度
插入排序的空间复杂度为常数阶O(1)。
稳定性分析
如果待排序的序列中存在两个或两个以上具有相同关键词的数据,排序后这些数据的相对次序保持不变,即它们的位置保持不变,通俗地讲,就是两个相同的数的相对顺序不会发生改变,则该算法是稳定的;如果排序后,数据的相对次序发生了变化,则该算法是不稳定的。关键词相同的数据元素将保持原有位置不变,所以该算法是稳定的。
应用分析
插入排序适用于已经有部分数据已经排好,并且排好的部分越大越好。一般在输入规模大于1000的场合下不建议使用插入排序。