算法【归并排序】

归并排序是创建在归并操作上的一种有效的排序算法,效率为O(nlogn)大O符号。1945年由约翰·冯·诺伊曼首次提出。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用,且各层分治递归可以同时进行。

采用分治法:

  • 分割:递归地把当前序列平均分割成两半。
  • 集成:在保持元素顺序的同时将上一步得到的子序列集成到一起(归并)。

归并操作(merge),也叫归并算法,指的是将两个已经排序的序列合并成一个序列的操作。归并排序算法依赖归并操作。

递归法(Top-down)

  1. 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
  2. 设定两个指针,最初位置分别为两个已经排序序列的起始位置
  3. 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
  4. 重复步骤3直到某一指针到达序列尾
  5. 将另一序列剩下的所有元素直接复制到合并序列尾

迭代法(Bottom-up)

原理如下(假设序列共有n个元素):

  1. 将序列每相邻两个数字进行归并操作,形成ceil(n/2)个序列,排序后每个序列包含两/一个元素
  2. 若此时序列数不是1个则将上述序列再次归并,形成ceil(n/4)个序列,每个序列包含四/三个元素
  3. 重复步骤2,直到所有元素排序完毕,即序列数为1
def mergeSort(nums):
    if len(nums) < 2:
        return nums
    mid = len(nums) // 2
    left = mergeSort(nums[:mid])
    right = mergeSort(nums[mid:])
    result = []
    while left and right:
        if left[0] <= right[0]:
            result.append(left.pop(0))
        else:
            result.append(right.pop(0))
    if left:
        result += left
    if right:
        result += right
    return result


if __name__ == "__main__":
    nums = [1, 4, 2, 3.6, -1, 0, 25, -34, 8, 9, 1, 0]
    print("original:", nums)
    print("Sorted:", mergeSort(nums))

>>>
original: [1, 4, 2, 3.6, -1, 0, 25, -34, 8, 9, 1, 0]
Sorted: [-34, -1, 0, 0, 1, 1, 2, 3.6, 4, 8, 9, 25]

参考:https://zh.wikipedia.org/wiki/Wikipedia:%E9%A6%96%E9%A1%B5

posted @ 2020-07-07 00:16  自己有自己的调调、  阅读(204)  评论(0编辑  收藏  举报