9、Python 数据分析-2012美国大选献金项目

需求

  • 1.加载数据
  • 2.查看数据的基本信息
  • 3.指定数据截取,将如下字段的数据进行提取,其他数据舍弃
    • cand_nm :候选人姓名
    • contbr_nm : 捐赠人姓名
    • contbr_st :捐赠人所在州
    • contbr_employer : 捐赠人所在公司
    • contbr_occupation : 捐赠人职业
    • contb_receipt_amt :捐赠数额(美元)
    • contb_receipt_dt : 捐款的日期
  • 4.对新数据进行总览,查看是否存在缺失数据
  • 5.用统计学指标快速描述数值型属性的概要。
  • 6.空值处理。可能因为忘记填写或者保密等等原因,相关字段出现了空值,将其填充为NOT PROVIDE
  • 7.异常值处理。将捐款金额<=0的数据删除
  • 8.新建一列为各个候选人所在党派party
  • 9.查看party这一列中有哪些不同的元素
  • 10.统计party列中各个元素出现次数
  • 11.查看各个党派收到的政治献金总数contb_receipt_amt
  • 12.查看具体每天各个党派收到的政治献金总数contb_receipt_amt
  • 13.将表中日期格式转换为'yyyy-mm-dd'。
  • 14.查看老兵(捐献者职业)DISABLED VETERAN主要支持谁

加载数据

import numpy as np
import pandas as pd
df = pd.read_csv('./data/usa_election.txt',low_memory=False)

查看数据的基本信息

df.info()
>>>
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 536041 entries, 0 to 536040
Data columns (total 16 columns):
 #   Column             Non-Null Count   Dtype  
---  ------             --------------   -----  
 0   cmte_id            536041 non-null  object 
 1   cand_id            536041 non-null  object 
 2   cand_nm            536041 non-null  object 
 3   contbr_nm          536041 non-null  object 
 4   contbr_city        536026 non-null  object 
 5   contbr_st          536040 non-null  object 
 6   contbr_zip         535973 non-null  object 
 7   contbr_employer    525088 non-null  object 
 8   contbr_occupation  530520 non-null  object 
 9   contb_receipt_amt  536041 non-null  float64
 10  contb_receipt_dt   536041 non-null  object 
 11  receipt_desc       8479 non-null    object 
 12  memo_cd            49718 non-null   object 
 13  memo_text          52740 non-null   object 
 14  form_tp            536041 non-null  object 
 15  file_num           536041 non-null  int64  
dtypes: float64(1), int64(1), object(14)
memory usage: 65.4+ MB

指定数据截取,将如下字段的数据进行提取,其他数据舍弃

  • cand_nm :候选人姓名
  • contbr_nm : 捐赠人姓名
  • contbr_st :捐赠人所在州
  • contbr_employer : 捐赠人所在公司
  • contbr_occupation : 捐赠人职业
  • contb_receipt_amt :捐赠数额(美元)
  • contb_receipt_dt : 捐款的日期
df = df[['cand_nm','contbr_nm','contbr_st','contbr_employer','contbr_occupation','contb_receipt_amt','contb_receipt_dt']]

对新数据进行总览,查看是否存在缺失数据

df.info()
>>>
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 536041 entries, 0 to 536040
Data columns (total 7 columns):
 #   Column             Non-Null Count   Dtype  
---  ------             --------------   -----  
 0   cand_nm            536041 non-null  object 
 1   contbr_nm          536041 non-null  object 
 2   contbr_st          536040 non-null  object 
 3   contbr_employer    525088 non-null  object 
 4   contbr_occupation  530520 non-null  object 
 5   contb_receipt_amt  536041 non-null  float64
 6   contb_receipt_dt   536041 non-null  object 
dtypes: float64(1), object(6)
memory usage: 28.6+ MB

用统计学指标快速描述数值型属性的概要

df.describe()

空值处理,可能因为忘记填写或者保密等等原因,相关字段出现了空值,将其填充为NOT PROVIDE

df.fillna(value='NOT PROVIDE',inplace=True,axis=0)
df.info()
>>>
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 536041 entries, 0 to 536040
Data columns (total 7 columns):
 #   Column             Non-Null Count   Dtype  
---  ------             --------------   -----  
 0   cand_nm            536041 non-null  object 
 1   contbr_nm          536041 non-null  object 
 2   contbr_st          536041 non-null  object 
 3   contbr_employer    536041 non-null  object 
 4   contbr_occupation  536041 non-null  object 
 5   contb_receipt_amt  536041 non-null  float64
 6   contb_receipt_dt   536041 non-null  object 
dtypes: float64(1), object(6)
memory usage: 28.6+ MB

异常值处理。将捐款金额<=0的数据删除

df.loc[df['contb_receipt_amt'] <= 0] #异常值对应的行数据

indexs = df.loc[df['contb_receipt_amt'] <= 0].index#提取异常数据的行号
>>>
Int64Index([    43,    265,    650,    666,    720,    810,    835,    836,
               837,    838,
            ...
            535929, 535937, 535942, 535945, 535971, 535975, 536003, 536005,
            536006, 536007],
           dtype='int64', length=5727)
df.drop(labels=indexs,axis=0,inplace=True)#删除这些异常数据

新建一列为各个候选人所在党派party

parties = {
  'Bachmann, Michelle': 'Republican',
  'Romney, Mitt': 'Republican',
  'Obama, Barack': 'Democrat',
  "Roemer, Charles E. 'Buddy' III": 'Reform',
  'Pawlenty, Timothy': 'Republican',
  'Johnson, Gary Earl': 'Libertarian',
  'Paul, Ron': 'Republican',
  'Santorum, Rick': 'Republican',
  'Cain, Herman': 'Republican',
  'Gingrich, Newt': 'Republican',
  'McCotter, Thaddeus G': 'Republican',
  'Huntsman, Jon': 'Republican',
  'Perry, Rick': 'Republican'           
 }
df['party'] = df['cand_nm'].map(parties)
df.head()

查看party这一列中有哪些不同的元素

df['party'].unique()
>>>
array(['Republican', 'Democrat', 'Reform', 'Libertarian'], dtype=object)

统计party列中各个元素出现次数

df['party'].value_counts()
>>>
Democrat       289999
Republican     234300
Reform           5313
Libertarian       702
Name: party, dtype: int64

查看各个党派收到的政治献金总数contb_receipt_amt

df.groupby(by='party')['contb_receipt_amt'].sum()
>>>
party
Democrat       8.259441e+07
Libertarian    4.132769e+05
Reform         3.429658e+05
Republican     1.251181e+08
Name: contb_receipt_amt, dtype: float64

查看具体每天各个党派收到的政治献金总数contb_receipt_amt

df.groupby(by=['contb_receipt_dt','party'])['contb_receipt_amt'].sum()
>>>
contb_receipt_dt  party      
01-APR-11         Reform             50.00
                  Republican      12635.00
01-AUG-11         Democrat       182198.00
                  Libertarian      1000.00
                  Reform           1847.00
                                   ...    
31-MAY-11         Republican     313839.80
31-OCT-11         Democrat       216971.87
                  Libertarian      4250.00
                  Reform           3205.00
                  Republican     751542.36
Name: contb_receipt_amt, Length: 1183, dtype: float64

将表中日期格式转换为'yyyy-mm-dd'

months = {'JAN' : 1, 'FEB' : 2, 'MAR' : 3, 'APR' : 4, 'MAY' : 5, 'JUN' : 6,
          'JUL' : 7, 'AUG' : 8, 'SEP' : 9, 'OCT': 10, 'NOV': 11, 'DEC' : 12}
def transform_date(date):
    day,month,year = date.split('-')
    month = months[month]
    return '20'+year+'-'+str(month)+'-'+day
df['contb_receipt_dt'] = df['contb_receipt_dt'].map(transform_date)
df.head()

查看老兵(捐献者职业)DISABLED VETERAN主要支持谁

df.columns
>>>
Index(['cand_nm', 'contbr_nm', 'contbr_st', 'contbr_employer',
       'contbr_occupation', 'contb_receipt_amt', 'contb_receipt_dt', 'party'],
      dtype='object')

#1.先把老兵这个职业对应的行数据取出
old_df = df.loc[df['contbr_occupation'] == 'DISABLED VETERAN']


#2.对old_df根据候选人分组,然后对钱数聚合
old_df.groupby(by='cand_nm')['contb_receipt_amt'].sum()
>>>
cand_nm
Cain, Herman       300.00
Obama, Barack     4205.00
Paul, Ron         2425.49
Santorum, Rick     250.00
Name: contb_receipt_amt, dtype: float64
posted @ 2020-06-30 20:30  自己有自己的调调、  阅读(440)  评论(2编辑  收藏  举报