BZOJ2818:Gcd(莫比乌斯反演)
Description
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.
Input
一个整数N
Output
如题
Sample Input
4
Sample Output
4
HINT
hint
对于样例(2,2),(2,4),(3,3),(4,2)
1<=N<=10^7
Solution
同BZOJ2820……
Code
1 #include<iostream> 2 #include<cstdio> 3 #define N (10000000) 4 using namespace std; 5 6 int n,m,vis[N+5],prime[N+5],mu[N+5],cnt; 7 long long sum[N+5]; 8 9 void Get_mu() 10 { 11 mu[1]=1; 12 for (int i=2; i<=n; ++i) 13 { 14 if (!vis[i]){prime[++cnt]=i; mu[i]=-1;} 15 for (int j=1; j<=cnt && prime[j]*i<=n; ++j) 16 { 17 vis[prime[j]*i]=true; 18 if (i%prime[j]==0) break; 19 mu[prime[j]*i]=-mu[i]; 20 } 21 } 22 for (int i=1; i<=cnt; ++i) 23 for (int j=1; j*prime[i]<=n; ++j) 24 sum[j*prime[i]]+=mu[j]; 25 for (int i=1; i<=n; ++i) sum[i]+=sum[i-1]; 26 } 27 28 long long Calc(int n,int m) 29 { 30 long long ans=0; if (n>m) swap(n,m); 31 for (int l=1,r; l<=n; l=r+1) 32 { 33 r=min(n/(n/l),m/(m/l)); 34 ans+=(sum[r]-sum[l-1])*(n/l)*(m/l); 35 } 36 return ans; 37 } 38 39 int main() 40 { 41 scanf("%d",&n); 42 Get_mu(); 43 printf("%lld\n",Calc(n,n)); 44 }