BZOJ2822:[AHOI2012]树屋阶梯(卡特兰数,高精度)

Description

暑假期间,小龙报名了一个模拟野外生存作战训练班来锻炼体魄,训练的第一个晚上,教官就给他们出了个难题。由于地上露营湿气重,必须选择在高处的树屋露营。小龙分配的树屋建立在一颗高度为N+1尺(N为正整数)的大树上,正当他发愁怎么爬上去的时候,发现旁边堆满了一些空心四方钢材(如图1.1),经过观察和测量,这些钢材截面的宽和高大小不一,但都是1尺的整数倍,教官命令队员们每人选取N个空心钢材来搭建一个总高度为N尺的阶梯来进入树屋,该阶梯每一步台阶的高度为1尺,宽度也为1尺。如果这些钢材有各种尺寸,且每种尺寸数量充足,那么小龙可以有多少种搭建方法?(注:为了避免夜里踏空,钢材空心的一面绝对不可以向上。)
、以树屋高度为4尺、阶梯高度N=3尺为例,小龙一共有如图1.2所示的5种搭建方法:

Input

一个正整数 N(1≤N≤500),表示阶梯的高度

Output

一个正整数,表示搭建方法的个数。(注:搭建方法个数可能很大。)

Sample Input

3

Sample Output

5

HINT

1  ≤N≤500

Solution

大胆猜了一波卡特兰数然后就过了

Code

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cmath>
 4 using namespace std;
 5 
 6 int n,a[5009],cnt[1009];
 7 
 8 void Divide(int x,int opt)
 9 {
10     for (int i=2; i<=sqrt(x); ++i)
11         while (x%i==0) x/=i,cnt[i]+=opt;
12     if (x>1) cnt[x]+=opt;
13 }
14 
15 void Mul(int *a,int b)
16 {
17     int g=0;
18     for (int i=1; i<=a[0]; ++i)
19         a[i]=a[i]*b+g,g=a[i]/10,a[i]%=10;
20     while (g) a[0]++,a[a[0]]=g%10,g/=10;
21 }
22 
23 int main()
24 {
25     scanf("%d",&n);
26     for (int i=n+1; i<=2*n; ++i) Divide(i,1);
27     for (int i=2; i<=n+1; ++i) Divide(i,-1);
28     a[0]=a[1]=1;
29     for (int i=2; i<=1000; ++i)
30         while (cnt[i]>=1) 
31             Mul(a,i),cnt[i]--;
32     for (int i=a[0]; i>=1; --i)
33         printf("%d",a[i]);
34 }
posted @ 2018-08-27 16:05  Refun  阅读(210)  评论(0编辑  收藏  举报