BZOJ1007:[HNOI2008]水平可见直线(计算几何)
Description
在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为
可见的,否则Li为被覆盖的.
例如,对于直线:
L1:y=x; L2:y=-x; L3:y=0
则L1和L2是可见的,L3是被覆盖的.
给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线.
Input
第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi
Output
从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必须有个空格
Sample Input
3
-1 0
1 0
0 0
-1 0
1 0
0 0
Sample Output
1 2
Solution
首先把直线按照斜率排序,再用个栈维护一下。
画个图可以发现,如果直线$i$和直线$stack[top]$的交点在直线$stack[top-1]$的左边,那么$stack[top]$就可以被弹出了。随便判判就好了。
Code
1 #include<iostream> 2 #include<cstring> 3 #include<cstdio> 4 #include<algorithm> 5 #define N (50009) 6 #define INF (1e18) 7 using namespace std; 8 9 struct Vector 10 { 11 double x,y; 12 Vector(double xx=0,double yy=0) 13 { 14 x=xx; y=yy; 15 } 16 }p[N]; 17 typedef Vector Point; 18 19 struct Line 20 { 21 double k,b; 22 Point x,y; 23 int id; 24 bool operator < (const Line &a) const 25 { 26 return k==a.k?b>a.b:k>a.k; 27 } 28 bool operator == (const Line &a) const 29 { 30 return k==a.k && b==a.b; 31 } 32 }L[N],stack[N]; 33 34 int n,k,b,ans[N],top; 35 36 double Cross(Vector a,Vector b) {return a.x*b.y-a.y*b.x;} 37 Vector operator - (Vector a,Vector b) {return Vector(a.x-b.x,a.y-b.y);} 38 39 inline int read() 40 { 41 int x=0,w=1; char c=getchar(); 42 while (!isdigit(c)) {if (c=='-') w=-1; c=getchar();} 43 while (isdigit(c)) x=x*10+c-'0', c=getchar(); 44 return x*w; 45 } 46 47 Point Line_Cross(Line u,Line v) 48 { 49 Point ans; 50 ans.x=(v.b-u.b)/(u.k-v.k); 51 ans.y=u.k*ans.x+u.b; 52 return ans; 53 } 54 55 int main() 56 { 57 n=read(); 58 for (int i=1; i<=n; ++i) 59 { 60 k=read(); b=read(); 61 L[i]=(Line){k,b}; 62 L[i].x=(Point){0,b}; 63 L[i].y=(Point){1,k+b}; 64 L[i].id=i; 65 } 66 sort(L+1,L+n+1); 67 for (int i=1; i<=n; ++i) 68 { 69 if (top && L[i].k==stack[top].k) continue; 70 while (top>=2) 71 { 72 Point p=Line_Cross(stack[top],L[i]); 73 if (Cross(stack[top-1].x-p,stack[top-1].y-p)>0) break; 74 top--; 75 } 76 stack[++top]=L[i]; 77 } 78 for (int i=1; i<=top; ++i) ans[stack[i].id]=1; 79 for (int i=1; i<=n; ++i) if (ans[i]) printf("%d ",i); 80 }