BZOJ3236:[AHOI2013]作业(莫队,分块)
Description
Input
Output
Sample Input
3 4
1 2 2
1 2 1 3
1 2 1 1
1 3 1 3
2 3 2 3
1 2 2
1 2 1 3
1 2 1 1
1 3 1 3
2 3 2 3
Sample Output
2 2
1 1
3 2
2 1
1 1
3 2
2 1
HINT
N=100000,M=1000000
Solution
首先有一个比较显然的做法就是用莫队加树状数组……然而这样的话复杂度是$n\sqrt nlog$。
因为树状数组的修改和查询都是$log$的,所以我们用一个修改$O(1)$,查询$O(\sqrt n)$的分块代替树状数组,那么总的复杂度就是$n\sqrt n$了。
Code
1 #include<iostream> 2 #include<cstring> 3 #include<cstdio> 4 #include<cmath> 5 #include<algorithm> 6 #define N (100009) 7 #define M (1000009) 8 #define S (359) 9 using namespace std; 10 11 int n,m,a[N],l,r,x,y,ans2,Keg[N],q_num; 12 int ID[N],L[S],R[S],Val[N][2],Sum[N][2]; 13 struct Que 14 { 15 int l,r,a,b,id,ans1,ans2; 16 bool operator < (const Que &a) const 17 { 18 if (ID[l]==ID[a.l]) return r<a.r; 19 return ID[l]<ID[a.l]; 20 } 21 }Q[M]; 22 bool cmp(Que a,Que b) {return a.id<b.id;} 23 24 inline int read() 25 { 26 int x=0,w=1; char c=getchar(); 27 while (c<'0' || c>'9') {if (c=='-') w=-1; c=getchar();} 28 while (c>='0' && c<='9') x=x*10+c-'0', c=getchar(); 29 return x*w; 30 } 31 32 void Build() 33 { 34 int unit=sqrt(n); 35 int num=n/unit+(n%unit!=0); 36 for (int i=1; i<=num; ++i) 37 L[i]=(i-1)*unit+1, R[i]=i*unit; 38 R[num]=n; 39 for (int i=1; i<=num; ++i) 40 for (int j=L[i]; j<=R[i]; ++j) ID[j]=i; 41 } 42 43 int Query(int l,int r,int opt) 44 { 45 int ans=0; 46 if (ID[l]==ID[r]) 47 { 48 for (int i=l; i<=r; ++i) ans+=Val[i][opt]; 49 return ans; 50 } 51 for (int i=l; i<=R[ID[l]]; ++i) ans+=Val[i][opt]; 52 for (int i=L[ID[r]]; i<=r; ++i) ans+=Val[i][opt]; 53 for (int i=ID[l]+1; i<=ID[r]-1; ++i) ans+=Sum[i][opt]; 54 return ans; 55 } 56 57 void Del(int p) 58 { 59 Val[a[p]][0]--; Sum[ID[a[p]]][0]--; 60 if (!Val[a[p]][0]) Val[a[p]][1]--, Sum[ID[a[p]]][1]--; 61 } 62 63 void Ins(int p) 64 { 65 Val[a[p]][0]++; Sum[ID[a[p]]][0]++; 66 if (Val[a[p]][0]==1) Val[a[p]][1]++, Sum[ID[a[p]]][1]++; 67 } 68 69 int main() 70 { 71 n=read(); m=read(); 72 Build(); 73 for (int i=1; i<=n; ++i) a[i]=read(); 74 for (int i=1; i<=m; ++i) 75 { 76 l=read(); r=read(); x=read(); y=read(); 77 Q[++q_num]=(Que){l,r,x,y,i}; 78 } 79 sort(Q+1,Q+m+1); 80 int l=1,r=0; 81 for (int i=1; i<=m; ++i) 82 { 83 while (l<Q[i].l) Del(l++); 84 while (l>Q[i].l) Ins(--l); 85 while (r<Q[i].r) Ins(++r); 86 while (r>Q[i].r) Del(r--); 87 Q[i].ans1=Query(Q[i].a,Q[i].b,0); 88 Q[i].ans2=Query(Q[i].a,Q[i].b,1); 89 } 90 sort(Q+1,Q+m+1,cmp); 91 for (int i=1; i<=m; ++i) 92 printf("%d %d\n",Q[i].ans1,Q[i].ans2); 93 }