BZOJ4766:文艺计算姬(矩阵树定理)

Description

"奋战三星期,造台计算机"。小W响应号召,花了三星期造了台文艺计算姬。文艺计算姬比普通计算机有更多的艺术细胞。
普通计算机能计算一个带标号完全图的生成树个数,而文艺计算姬能计算一个带标号完全二分图的生成树个数。
更具体地,给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图K_{n,m},计算姬能快速算出其生成树个数。
小W不知道计算姬算的对不对,你能帮助他吗?

Input

仅一行三个整数n,m,p,表示给出的完全二分图K_{n,m}
1 <= n,m,p <= 10^18

Output

仅一行一个整数,表示完全二分图K_{n,m}的生成树个数,答案需要模p。

Sample Input

2 3 7

Sample Output

5

Solution

首先先把(度数矩阵-邻接矩阵)搞出来,这里以样例为例。
$
\left\{
\begin{matrix}
3&0&-1&-1&-1\\
0&3&-1&-1&-1\\
-1&-1&2&0&0\\
-1&-1&0&2&0\\
-1&-1&0&0&2\\
\end{matrix}
\right\}
$
按照求矩阵树的方法随便删掉一行一列,这里删掉了最后一行和最后一列。
$
\left\{
\begin{matrix}
3&0&-1&-1\\
0&3&-1&-1\\
-1&-1&2&0\\
-1&-1&0&2\\
\end{matrix}
\right\}
$
把前$n-1$行和后$m-1$行都加到第$n$行
$
\left\{
\begin{matrix}
3&0&-1&-1\\
1&1&0&0\\
-1&-1&2&0\\
-1&-1&0&2\\
\end{matrix}
\right\}
$
用第$n$行的去加到后面$m-1$行上,把$-1$给消掉。
$
\left\{
\begin{matrix}
3&0&-1&-1\\
1&1&0&0\\
0&0&2&0\\
0&0&0&2\\
\end{matrix}
\right\}
$

这样的话这个矩阵的行列式显然就是$m^{n-1}n^{m-1}$了。
记得快速乘。

Code

 1 #include<cstdio>
 2 #define LL long long 
 3 using namespace std;
 4 
 5 LL n,m,p;
 6 
 7 LL Mul(LL a,LL b)
 8 {
 9     LL tmp=a*b-(LL)((long double)a*b/p+0.1)*p;
10     return tmp<0?tmp+p:tmp;
11 }
12 
13 LL Qpow(LL a,LL b)
14 {
15     LL ans=1;
16     while (b)
17     {
18         if (b&1) ans=Mul(ans,a);
19         a=Mul(a,a); b>>=1;
20     }
21     return ans;
22 }
23 
24 int main()
25 {
26     scanf("%lld%lld%lld",&n,&m,&p);
27     printf("%lld",Mul(Qpow(n,m-1),Qpow(m,n-1)));
28 }
posted @ 2018-12-25 18:15  Refun  阅读(285)  评论(0编辑  收藏  举报