在浏览器中输入Google.com并且按下回车之后发生了什么?

     原文转自:http://kb.cnblogs.com/page/516964/

      本文试图回答一个古老的面试问题:当你在浏览器中输入google.com并且按下回车之后发生了什么?

  不过我们不再局限于平常的回答,而是想办法回答地尽可能具体,不遗漏任何细节。

  这将是一个协作的过程,所以深入挖掘吧,并且帮助我们一起完善它。仍然有大量的细节等待着你来添加,欢迎向我们发送Pull Requset!

  回车键按下

  为了从头开始,我们选择键盘上的回车键被按到最低处作为起点。在这个时刻,一个专用于回车键的电流回路被直接或者通过电容器闭合了,使得少量的电流进入了键盘的逻辑电路系统。这个系统会扫描每个键的状态,对于按键开关的电位弹跳变化进行噪音消除(debounce),并将其转化为键盘码值。在这里,回车的码值是13。键盘控制器在得到码值之后,将其编码,用于之后的传输。现在这个传输过程几乎都是通过通用串行总线(USB)或者蓝牙(Bluetooth)来进行的,以前是通过PS/2或者ADB连接进行。

  USB键盘:

  • 键盘的USB元件通过计算机上的USB接口与USB控制器相连接,USB接口中的第一号针为它提供了5V的电压
  • 键码值存储在键盘内部电路一个叫做"endpoint"的寄存器内
  • USB控制器大概每隔10ms便查询一次"endpoint"以得到存储的键码值数据,这个最短时间间隔由键盘提供
  • 键值码值通过USB串行接口引擎被转换成一个或者多个遵循低层USB协议的USB数据包
  • 这些数据包通过D+针或者D-针(中间的两个针),以最高1.5Mb/s的速度从键盘传输至计算机。速度限制是因为人机交互设备总是被声明成"低速设备"(USB 2.0 compliance)
  • 这个串行信号在计算机的USB控制器处被解码,然后被人机交互设备通用键盘驱动进行进一步解释。之后按键的码值被传输到操作系统的硬件抽象层

  虚拟键盘(触屏设备):

  • 在现代电容屏上,当用户把手指放在屏幕上时,一小部分电流从传导层的静电域经过手指传导,形成了一个回路,使得屏幕上触控的那一点电压下降,屏幕控制器产生一个中断,报告这次“点击”的坐标
  • 然后移动操作系统通知当前活跃的应用,有一个点击事件发生在它的某个GUI部件上了,现在这个部件是虚拟键盘的按钮
  • 虚拟键盘引发一个软中断,返回给OS一个“按键按下”消息
  • 这个消息又返回来向当前活跃的应用通知一个“按键按下”事件

  产生中断[非USB键盘]

  键盘在它的中断请求线(IRQ)上发送信号,信号会被中断控制器映射到一个中断向量,实际上就是一个整型数 。CPU使用中断描述符表(IDT)把中断向量映射到对应函数,这些函数被称为中断处理器,它们由操作系统内核提供。当一个中断到达时,CPU根据IDT和中断向量索引到对应的中端处理器,然后操作系统内核出场了。

  (Windows)一个 WM_KEYDOWN 消息被发往应用程序

  HID把键盘按下的事件传送给 KBDHID.sys 驱动,把HID的信号转换成一个扫描码(Scancode),这里回车的扫描码是 VK_RETURN(0x0d)。 KBDHID.sys 驱动和 KBDCLASS.sys (键盘类驱动,keyboard class driver)进行交互,这个驱动负责安全地处理所有键盘和小键盘的输入事件。之后它又去调用 Win32K.sys ,在这之前有可能把消息传递给安装的第三方键盘过滤器。这些都是发生在内核模式。

  Win32K.sys 通过 GetForegroundWindow() API函数找到当前哪个窗口是活跃的。这个API函数提供了当前浏览器的地址栏的句柄。Windows系统的"message pump"机制调用 SendMessage(hWnd, WM_KEYDOWN, VK_RETURN, lParam) 函数, lParam 是一个用来指示这个按键的更多信息的掩码,这些信息包括按键重复次数(这里是0),实际扫描码(可能依赖于OEM厂商,不过通常不会是 VK_RETURN ),功能键(alt, shift, ctrl)是否被按下(在这里没有),以及一些其他状态。

  Windows的 SendMessage API直接将消息添加到特定窗口句柄 hWnd 的消息队列中,之后赋给 hWnd 的主要消息处理函数 WindowProc 将会被调用,用于处理队列中的消息。

  当前活跃的句柄 hWnd 实际上是一个edit control控件,这种情况下,WindowProc 有一个用于处理WM_KEYDOWN 消息的处理器,这段代码会查看 SendMessage 传入的第三个参数 wParam ,因为这个参数是VK_RETURN ,于是它知道用户按下了回车键。

  (Mac OS X)一个 KeyDown NSEvent被发往应用程序

  中断信号引发了I/O Kit Kext键盘驱动的中断处理事件,驱动把信号翻译成键码值,然后传给OS X的WindowServer 进程。然后, WindowServer 将这个事件通过Mach端口分发给合适的(活跃的,或者正在监听的)应用程序,这个信号会被放到应用程序的消息队列里。队列中的消息可以被拥有足够高权限的线程使用 mach_ipc_dispatch 函数读取到。这个过程通常是由 NSApplication 主事件循环产生并且处理的,通过NSEventType 为 KeyDown 的 NSEvent 。

  (GNU/Linux)Xorg 服务器监听键码值

  当使用图形化的 X Server 时,X Server会按照特定的规则把键码值再一次映射,映射成扫描码。当这个映射过程完成之后, X Server 把这个按键字符发送给窗口管理器(DWM,metacity, i3等等),窗口管理器再把字符发送给当前窗口。当前窗口使用有关图形API把文字打印在输入框内。

  解析URL

  • 浏览器通过URL能够知道下面的信息:

    • Protocol "http"

      使用HTTP协议

    • Resource "/"

      请求的资源是主页(index)

  输入的是URL还是搜索的关键字?

  当协议或主机名不合法时,浏览器会将地址栏中输入的文字传给默认的搜索引擎。大部分情况下,在把文字传递给搜索引擎的时候,URL会带有特定的一串字符,用来告诉搜索引擎这次搜索来自这个特定浏览器。

  检查HSTS列表···

  • 浏览器检查自带的“预加载HSTS(HTTP严格传输安全)”列表,这个列表里包含了那些请求浏览器只使用HTTPS进行连接的网站
  • 如果网站在这个列表里,浏览器会使用HTTPS而不是HTTP协议,否则,最初的请求会使用HTTP协议发送
  • 注意,一个网站哪怕不在HSTS列表里,也可以要求浏览器对自己使用HSTS政策进行访问。浏览器向网站发出第一个HTTP请求之后,网站会返回浏览器一个响应,请求浏览器只使用HTTPS发送请求。然而,就是这第一个HTTP请求,却可能会使用户收到 downgrade attack 的威胁,这也是为什么现代浏览器都预置了HSTS列表。

  转换非ASCII的Unicode字符

  • 浏览器检查输入是否含有不是 a-z, A-Z0-9, - 或者 . 的字符
  • 这里主机名是 google.com ,所以没有非ASCII的字符,如果有的话,浏览器会对主机名部分使用Punycode 编码

  DNS查询···

  • 浏览器检查域名是否在缓存当中
  • 如果缓存中没有,就去调用 gethostbynme 库函数(操作系统不同函数也不同)进行查询
  • gethostbyname 函数在试图进行DNS解析之前首先检查域名是否在本地Hosts里,Hosts的位置 不同的操作系统有所不同
  • 如果 gethostbyname 没有这个域名的缓存记录,也没有在 hosts 里找到,它将会向DNS 服务器发送一条DNS查询请求。DNS服务器是由网络通信栈提供的,通常是本地路由器或者ISP的缓存DNS服务器。
  • 查询本地 DNS 服务器
  • 如果DNS服务器和我们的主机在同一个子网内,系统会按照下面的 ARP 过程对 DNS 服务器进行 ARP查询
  • 如果DNS服务器和我们的主机在不同的子网,系统会按照下面的 ARP 过程对默认网关进行查询

  ARP

  要想发送ARP广播,我们需要有一个目标IP地址,同时还需要知道用于发送ARP广播的接口的Mac地址。

  • 首先查询ARP缓存,如果缓存命中,我们返回结果:目标IP = MAC

  如果缓存没有命中:

  • 查看路由表,看看目标IP地址是不是在本地路由表中的某个子网内。是的话,使用跟那个子网相连的接口,否则使用与默认网关相连的接口。
  • 查询选择的网络接口的MAC地址
  • 我们发送一个二层ARP请求:

  ARP Request:

Sender MAC: interface:mac:address:here
Sender IP: interface.ip.goes.here
Target MAC: FF:FF:FF:FF:FF:FF (Broadcast)
Target IP: target.ip.goes.here

  根据连接主机和路由器的硬件类型不同,可以分为以下几种情况:

  直连:

  • 如果我们和路由器是直接连接的,路由器会返回一个 ARP Reply (见下面)。

  集线器:

  • 如果我们连接到一个集线器,集线器会把ARP请求向所有其它端口广播,如果路由器也“连接”在其中,它会返回一个 ARP Reply 。

  交换机:

  • 如果我们连接到了一个交换机,交换机会检查本地 CAM/MAC 表,看看哪个端口有我们要找的那个MAC地址,如果没有找到,交换机会向所有其它端口广播这个ARP请求。
  • 如果交换机的MAC/CAM表中有对应的条目,交换机会向有我们想要查询的MAC地址的那个端口发送ARP请求
  • 如果路由器也“连接”在其中,它会返回一个 ARP Reply

  ARP Reply:

Sender MAC: target:mac:address:here
Sender IP: target.ip.goes.here
Target MAC: interface:mac:address:here
Target IP: interface.ip.goes.here

  现在我们有了DNS服务器或者默认网关的IP地址,我们可以继续DNS请求了:

  • 使用53端口向DNS服务器发送UDP请求包,如果响应包太大,会使用TCP
  • 如果本地/ISP DNS服务器没有找到结果,它会发送一个递归查询请求,一层一层向高层DNS服务器做查询,直到查询到起始授权机构,如果找到会把结果返回

  使用套接字

  当浏览器得到了目标服务器的IP地址,以及URL中给出来端口号(http协议默认端口号是80, https默认端口号是443),它会调用系统库函数 socket ,请求一个TCP流套接字,对应的参数是 AF_INET 和SOCK_STREAM 。

  • 这个请求首先被交给传输层,在传输层请求被封装成TCP segment。目标端口会会被加入头部,源端口会在系统内核的动态端口范围内选取(Linux下是ip_local_port_range)
  • TCP segment被送往网络层,网络层会在其中再加入一个IP头部,里面包含了目标服务器的IP地址以及本机的IP地址,把它封装成一个TCP packet。
  • 这个TCP packet接下来会进入链路层,链路层会在封包中加入frame头部,里面包含了本地内置网卡的MAC地址以及网关(本地路由器)的MAC地址。像前面说的一样,如果内核不知道网关的MAC地址,它必须进行ARP广播来查询其地址。

  到了现在,TCP封包已经准备好了,可是使用下面的方式进行传输:

  对于大部分家庭网络和小型企业网络来说,封包会从本地计算机出发,经过本地网络,再通过调制解调器把数字信号转换成模拟信号,使其适于在电话线路,有线电视光缆和无线电话线路上传输。在传输线路的另一端,是另外一个调制解调器,它把模拟信号转换回数字信号,交由下一个 网络节点 处理。节点的目标地址和源地址将在后面讨论。

  大型企业和比较新的住宅通常使用光纤或直接以太网连接,这种情况下信号一直是数字的,会被直接传到下一个 网络节点 进行处理。

  最终封包会到达管理本地子网的路由器。在那里出发,它会继续经过自治区域的边界路由器,其他自治区域,最终到达目标服务器。一路上经过的这些路由器会从IP数据报头部里提取出目标地址,并将封包正确地路由到下一个目的地。IP数据报头部TTL域的值每经过一个路由器就减1,如果封包的TTL变为0,或者路由器由于网络拥堵等原因封包队列满了,那么这个包会被路由器丢弃。

  上面的发送和接受过程在TCP连接期间会发生很多次:

  • 客户端选择一个初始序列号(ISN),将设置了SYN位的封包发送给服务器端,表明自己要建立连接并设置了初始序列号

  • 服务器端接受到SYN包,如果它可以建立连接:
    • 服务器端选择它自己的初始序列号
    • 服务器端设置SYN位,表明自己选择了一个初始序列号
    • 服务器端把 (客户端ISN + 1) 复制到ACK域,并且设置ACK位,表明自己接收到了客户端的第一个封包
  • 客户端通过发送下面一个封包来确认这次连接:
    • 自己的序列号+1
    • 接收端ACK+1
    • 设置ACK位
  • 数据通过下面的方式传输:
    • 当一方发送了N个Bytes的数据之后,将自己的SEQ序列号也增加N
    • 另一方确认接收到这个数据包(或者一系列数据包)之后,它发送一个ACK包,ACK的值设置为接收到的数据包的最后一个序列号
  • 关闭连接时:
    • 要关闭连接的一方发送一个FIN包
    • 另一方确认这个FIN包,并且发送自己的FIN包
    • 要关闭的一方使用ACK包来确认接收到了FIN

  UDP 数据包

  TLS 握手

  • 客户端发送一个 Client hello 消息到服务器端,消息中同时包含了它的TLS版本,可用的加密算法和压缩算法。
  • 服务器端向客户端返回一个 Server hello 消息,消息中包含了服务器端的TLS版本,服务器选择了哪个加密和压缩算法,以及服务器的公开证书,证书中包含了公钥。客户端会使用这个公钥加密接下来的握手过程,直到协商生成一个新的对称密钥
  • 客户端根据自己的信任CA列表,验证服务器端的证书是否有效。如果有效,客户端会生成一串伪随机数,使用服务器的公钥加密它。这串随机数会被用于生成新的对称密钥
  • 服务器端使用自己的私钥解密上面提到的随机数,然后使用这串随机数生成自己的对称主密钥
  • 客户端发送一个 Finished 消息给服务器端,使用对称密钥加密这次通讯的一个散列值
  • 服务器端生成自己的 hash 值,然后解密客户端发送来的信息,检查这两个值是否对应。如果对应,就向客户端发送一个 Finished 消息,也使用协商好的对称密钥加密
  • 从现在开始,接下来整个 TLS 会话都使用对称秘钥进行加密,传输应用层(HTTP)内容

  TCP 数据包

  HTTP 协议···

  如果浏览器是Google出品的,它不会使用HTTP协议来获取页面信息,而是会与服务器端发送请求,商讨使用SPDY协议。

  如果浏览器使用HTTP协议,它会向服务器发送这样的一个请求:

GET / HTTP/1.1Host: google.com[其他头部]

  “其他头部”包含了一系列的由冒号分割开的键值对,它们的格式符合HTTP协议标准,它们之间由一个换行符分割开来。这里我们假设浏览器没有违反HTTP协议标准的bug,同时浏览器使用 HTTP/1.1 协议,不然的话头部可能不包含 Host 字段,同时 GET 请求中的版本号会变成 HTTP/1.0 或者 HTTP/0.9 。

HTTP/1.1 定义了“关闭连接”的选项 "close",发送者使用这个选项指示这次连接在响应结束之后会断开:

Connection:close

  不支持持久连接的 HTTP/1.1 必须在每条消息中都包含 "close" 选项。

  在发送完这些请求和头部之后,浏览器发送一个换行符,表示要发送的内容已经结束了。

  服务器端返回一个响应码,指示这次请求的状态,响应的形式是这样的:

200 OK[response headers]

  然后是一个换行,接下来有效载荷(payload),也就是 www.google.com 的HTML内容。服务器下面可能会关闭连接,如果客户端请求保持连接的话,服务器端会保持连接打开,以供以后的请求重用。

  如果浏览器发送的HTTP头部包含了足够多的信息(例如包含了 Etag 头部,以至于服务器可以判断出,浏览器缓存的文件版本自从上次获取之后没有再更改过,服务器可能会返回这样的响应:

304 Not Modified[response headers]

  这个响应没有有效载荷,浏览器会从自己的缓存中取出想要的内容。

  在解析完HTML之后,浏览器和客户端会重复上面的过程,直到HTML页面引入的所有资源(图片,CSS,favicon.ico等等)全部都获取完毕,区别只是头部的 GET / HTTP/1.1 会变成 GET /$(相对www.google.com的URL) HTTP/1.1 。

  如果HTML引入了 www.google.com 域名之外的资源,浏览器会回到上面解析域名那一步,按照下面的步骤往下一步一步执行,请求中的 Host 头部会变成另外的域名。

  HTTP服务器请求处理

  HTTPD(HTTP Daemon)在服务器端处理请求/相应。最常见的 HTTPD 有 Linux 上常用的 Apache 和 nginx,与 Windows 上的 IIS。

  • HTTPD接收请求

  • 服务器把请求拆分为以下几个参数:
    • HTTP请求方法(GET, POST, HEAD, PUT 和 DELETE )。在访问Google这种情况下,使用的是GET方法
    • 域名:google.com
    • 请求路径/页面:/ (我们没有请求google.com下的指定的页面,因此 / 是默认的路径)
  • 服务器验证其上已经配置了google.com的虚拟主机

  • 服务器验证google.com接受GET方法

  • 服务器验证该用户可以使用GET方法(根据IP地址,身份信息等)

  • 如果服务器安装了 URL 重写模块(例如 Apache 的 mod_rewrite 和 IIS 的 URL Rewrite),服务器会尝试匹配重写规则,如果匹配上的话,服务器会按照规则重写这个请求

  • 服务器根据请求信息获取相应的响应内容,这种情况下由于访问路径是 "/" ,会访问首页文件。(你可以重写这个规则,但是这个是最常用的)

  • 服务器会使用指定的处理程序分析处理这个文件,比如假设Google使用PHP,服务器会使用PHP解析index文件,并捕获输出,把PHP的输出结果给请求者

  浏览器背后的故事

  当服务器提供了资源之后(HTML,CSS,JS,图片等),浏览器会执行下面的操作:

  • 解析 HTML,CSS,JS
  • 渲染——构建 DOM 树 -> 渲染 -> 布局 -> 绘制

  浏览器

  浏览器的功能是从服务器上取回你想要的资源,然后展示在浏览器窗口当中。资源通常是 HTML 文件,也可能是 PDF,图片,或者其他类型的内容。资源的位置通过用户提供的 URI(Uniform Resource Identifier) 来确定。

  浏览器解释和展示 HTML 文件的方法,在 HTML 和 CSS 的标准中有详细介绍。这些标准由 Web 标准组织 W3C(World Wide Web Consortium) 维护。

  不同浏览器的用户界面大都十分接近,有很多共同的 UI 元素:

  • 一个地址栏
  • 后退和前进按钮
  • 书签选项
  • 刷新和停止按钮
  • 主页按钮

  浏览器高层架构

  组成浏览器的组件有:

  • 用户界面 用户界面包含了地址栏,前进后退按钮,书签菜单等等,除了请求页面之外所有你看到的内容都是用户界面的一部分
  • 浏览器引擎 浏览器引擎负责让 UI 和渲染引擎协调工作
  • 渲染引擎 渲染引擎负责展示请求内容。如果请求的内容是 HTML,渲染引擎会解析 HTML 和 CSS,然后将内容展示在屏幕上
  • 网络组件 网络组件负责网络调用,例如 HTTP 请求等,使用一个平台无关接口,下层是针对不同平台的具体实现
  • UI后端 UI后端用于绘制基本 UI 组件,例如下拉列表框和窗口。UI 后端暴露一个统一的平台无关的接口,下层使用操作系统的 UI 方法实现
  • Javascript 解释器 Javascript 解释器用于解析和执行 Javascript 代码
  • 数据存储 数据存储组件是一个持久层。浏览器可能需要在本地存储各种各样的数据,例如 Cookie 等。浏览器也需要支持诸如 localStorage,IndexedDB,WebSQL 和 FileSystem 之类的存储机制

  HTML 解析

  浏览器渲染引擎从网络层取得请求的文档,一般情况下文档会分成8kB大小的分块传输。

  HTML解析器的主要工作是对HTML文档进行解析,生成解析树。

  解析树是以DOM元素以及属性为节点的树。DOM是文档对象模型(Document Object Model)的缩写,它是HTML文档的对象表示,同时也是HTML元素面向外部(如Javascript)的接口。树的根部是"Document"对象。整个DOM和HTML文档几乎是一对一的关系。

  解析算法

  HTML不能使用常见的自顶向下或自底向上方法来进行分析。主要原因有以下几点:

  • 语言本身的“宽容”特性
  • HTML本身可能是残缺的,对于常见的残缺,浏览器需要有传统的容错机制来支持它们
  • 解析过程需要反复。对于其他语言来说,源码不会在解析过程中发生变化,但是对于HTML来说,动态代码,例如脚本元素中包含的 document.write() 方法会在源码中添加内容,也就是说,解析过程实际上会改变输入的内容

  由于不能使用常用的解析技术,浏览器创造了专门用于解析HTML的解析器。解析算法在 HTML5 标准规范中有详细介绍,算法主要包含了两个阶段:标记化(tokenization)和树的构建。

  解析结束之后

  浏览器开始加载网页的外部资源(CSS,图像,Javascript 文件等)。

  此时浏览器把文档标记为“可交互的”,浏览器开始解析处于“推迟”模式的脚本,也就是那些需要在文档解析完毕之后再执行的脚本。之后文档的状态会变为“完成”,浏览器会进行“加载”事件。

  注意解析 HTML 网页时永远不会出现“语法错误”,浏览器会修复所有错误,然后继续解析。

  执行同步 Javascript 代码。

  CSS 解析

  • 根据 CSS词法和句法 分析CSS文件和 <style> 标签包含的内容
  • 每个CSS文件都被解析成一个样式表对象,这个对象里包含了带有选择器的CSS规则,和对应CSS语法的对象
  • CSS解析器可能是自顶向下的,也可能是使用解析器生成器生成的自底向上的解析器

  页面渲染

  • 通过遍历DOM节点树创建一个“Frame 树”或“渲染树”,并计算每个节点的各个CSS样式值
  • 通过累加子节点的宽度,该节点的水平内边距(padding)、边框(border)和外边距(margin),自底向上的计算"Frame 树"中每个节点首的选(preferred)宽度
  • 通过自顶向下的给每个节点的子节点分配可行宽度,计算每个节点的实际宽度
  • 通过应用文字折行、累加子节点的高度和此节点的内边距(padding)、边框(border)和外边距(margin),自底向上的计算每个节点的高度
  • 使用上面的计算结果构建每个节点的坐标
  • 当存在元素使用 floated,位置有 absolutely 或 relatively 属性的时候,会有更多复杂的计算,详见http://dev.w3.org/csswg/css2/ 和 http://www.w3.org/Style/CSS/current-work
  • 创建layer(层)来表示页面中的哪些部分可以成组的被绘制,而不用被重新栅格化处理。每个帧对象都被分配给一个层
  • 页面上的每个层都被分配了纹理(?)
  • 每个层的帧对象都会被遍历,计算机执行绘图命令绘制各个层,此过程可能由CPU执行栅格化处理,或者直接通过D2D/SkiaGL在GPU上绘制
  • 上面所有步骤都可能利用到最近一次页面渲染时计算出来的各个值,这样可以减少不少计算量
  • 计算出各个层的最终位置,一组命令由 Direct3D/OpenGL发出,GPU命令缓冲区清空,命令传至GPU并异步渲染,帧被送到Window Server。

  GPU 渲染

  • 在渲染过程中,图形处理层可能使用通用用途的CPU,也可能使用图形处理器GPU
  • 当使用GPU用于图形渲染时,图形驱动软件会把任务分成多个部分,这样可以充分利用GPU强大的并行计算能力,用于在渲染过程中进行大量的浮点计算。

  Window Server

  后期渲染与用户引发的处理

  渲染结束后,浏览器根据某些时间机制运行JavaScript代码(比如Google Doodle动画)或与用户交互(在搜索栏输入关键字获得搜索建议)。类似Flash和Java的插件也会运行,尽管Google主页里没有。这些脚本可以触发网络请求,也可能改变网页的内容和布局,产生又一轮渲染与绘制。

posted @ 2016-04-19 22:31  yyxxzz22  阅读(198)  评论(0编辑  收藏  举报