Morris Traversal 二叉树遍历。
那天做了个SWAP NODE的题,要求constant space,不得不Morris Traversal。
稍微研究了一下,真正意义上的O(1)space对二叉树进行遍历。好像是1979年的算法。
第一次看着挺乱的,智商严重不足,不得不在纸上画出来,一目了然。。。建议大家自己动手画一下。
每个没有右节点的Node要建1个辅助path,回到他来自的那个左节点的parent。很绕口= =然后第二次来到这个点的时候,要去掉这个Path。所以每个点都遍历了2次,时间上还是O(n)..
和那个树状数组有点像,以每个左节点为中心。
import java.util.*;
public class Morris {
public static class TreeNode {
int val;
TreeNode left;
TreeNode right;
public TreeNode (int v) {
this.val = v;
left = null;
right = null;
}
}
public static List<Integer> preOrder(TreeNode root) {
List<Integer> res = new ArrayList<>();
TreeNode temp = root;
while (temp != null) {
TreeNode morisTemp = temp;
if (temp.left != null) {
morisTemp = temp.left;
while (morisTemp.right != null && morisTemp.right != temp) {
morisTemp = morisTemp.right;
}
// first time, need to add a path
if (morisTemp.right == null) {
morisTemp.right = temp;
//res.add(temp.val); //pre-Order
temp = temp.left;
} else { // second time, remove the path we added,
morisTemp.right = null;
//res.add(temp.val); //in-Order
temp = temp.right;
}
} else {
res.add(temp.val);
temp = temp.right;
}
}
return res;
}
public static void main(String[] args) {
TreeNode n10 = new TreeNode(10);
TreeNode n4 = new TreeNode(4);
TreeNode n1 = new TreeNode(1);
TreeNode n5 = new TreeNode(5);
TreeNode n3 = new TreeNode(3);
TreeNode n6 = new TreeNode(6);
TreeNode n12 = new TreeNode(12);
TreeNode n11 = new TreeNode(11);
TreeNode n14 = new TreeNode(14);
TreeNode n15 = new TreeNode(15);
n10.left = n4;
n10.right = n12;
n4.left = n1;
n4.right = n5;
n5.left = n3;
n5.right = n6;
n12.left = n11;
n12.right = n14;
n14.left = n15;
for (int i : preOrder(n10)) {
System.out.print(i + " ");
}
}
}
preOrder和inOrder做出来了,postOrder有点麻烦,不会做= =再研究吧。。