• Illustration of the proposed Online Deep Learning framework using Hedge Backpropagation (HBP).

    使用对冲反向传播(HBP)提出的在线深度学习框架的示例。

  • The blue lines represent feedforward flow for computing hidden layer features.

    蓝线表示计算隐含层特征的前馈流。

  • The orange lines indicate softmax output followed by the hedging combination at prediction time.

    橙色线表示softmax输出,后面是预测时间的对冲组合。

  • The green lines indicate the online updating flows with the hedge backpropagation approach.

    绿线表示采用对冲反向传播方法的在线更新流程。

 

The final prediction of this model is a weighted combination of the predictions of all these classifiers, where the weight of each classifier is denoted by alpha(l)

该模型的最终预测是所有这些分类器预测的加权组合,其中每个分类器的权重表示为

 

for each classifer, the smoothing parameter is used for setting a minimum weight.

Once the weights of the classifier is updated, the weights are calculated  as shown,

 

https://www.ijrte.org/wp-content/uploads/papers/v8i5/E6337018520.pdf

Initialize F(x)=DNN with N hidden layers and N+1 classifiers f(n), 

alpha(n)=1/(N+1),

 posted on 2022-06-27 20:35  Real_Yuan  阅读(231)  评论(0)    收藏  举报