鸢尾花数据集分析
鸢尾花数据集分析
鸢尾花
数据集分析一共150行数据,分别为三种种类。
种类 | 代表数字 |
---|---|
setosa | 0 |
versicolor | 1 |
virginica | 2 |
四种特征
特征 | 翻译 |
---|---|
sepal length (cm) | 萼片长度(厘米) |
sepal width (cm) | 萼片宽度(厘米) |
petal length (cm) | 花瓣长度(厘米) |
petal width (cm) | 花瓣宽度(厘米) |
各种属性对对应的散点图
各种属性的直方图
各种属性的雷达图
分类代码点这里
画图代码如下
'''
datatime:2020/6/14
author:wuxiong
description:鸢尾花数据集分类
'''
import numpy
from sklearn.datasets import load_iris
#读出鸢尾花数据集data
data=load_iris()
print(data.keys())
#鸢尾花数据集包含的内容
# print(data['data'])
#print(data['DESCR'])
# print(data['target_names'])
# print(data['feature_names'])
# print(data['data'])
import matplotlib.pyplot as plt
import numpy as np
#转化成nupy数组
data_numpy = np.array(data['data'])
target = np.array(data['target'])
#切片第一列
sepal_lenth = data_numpy[...,0]
#切片第二列
sepal_width = data_numpy[...,1]
#切片第三列
petal_length = data_numpy[...,2]
#切片第四列
petal_width = data_numpy[...,3]
sepal_lenth_feature =[sepal_lenth,'sepal lenth']
sepal_width_feature =[sepal_width,'sepal width']
petal_length_feature =[petal_length,'petal length']
petal_width_feature =[petal_width,'petal width']
features=[sepal_lenth_feature,sepal_width_feature,petal_length_feature,petal_width_feature]
colors1 = '#00CED1' #点的颜色
colors2 = '#DC143C'
clores3 = '#4fd424'
area = np.pi * 4**2 # 点面积
# 画散点图,12张图
def drawScatter(target,x,y,xlable,ylable):
for i,j in enumerate(x):
if(target[i]==0):
plt.scatter(x[i], y[i], s=area, c=colors1, alpha=0.4, label='setosa')
elif (target[i]==1):
plt.scatter(x[i], y[i], s=area, c=colors2, alpha=0.4, label='versicolor')
else:
plt.scatter(x[i], y[i], s=area, c=clores3, alpha=0.4, label='virginica')
plt.xlabel(xlable)
plt.ylabel(ylable)
plt.show()
pass
#画直方图,一共4张图
def drawHistogram(target,x_feature):
data = x_feature[0]
xlable = x_feature[1]
plt.hist(data, bins=50, normed=0, facecolor="blue", edgecolor="black", alpha=0.7)
plt.xlabel(xlable)
plt.ylabel("frequency")
plt.title("{} histogram".format(xlable))
plt.show()
#画雷达图,一张
def drawRader1(target,sepal_lenth,sepal_width,petal_length,petal_width):
# 雷达图1 - 极坐标的折线图/填图 - plt.plot()
plt.figure(figsize=(16,8))
ax1= plt.subplot(111, projection='polar')
ax1.set_title('features radar map\n') # 创建标题
ax1.set_rlim(0,12)
data1 = sepal_lenth
data2 = sepal_width
data3 = petal_length
data4 = petal_width
theta=np.arange(0, 2*np.pi, 2*np.pi/150)
# 创建数据
ax1.plot(theta,data1,'.--',label='data1')
ax1.fill(theta,data1,alpha=0.2)
ax1.plot(theta,data2,'.--',label='data2')
ax1.fill(theta,data2,alpha=0.2)
ax1.plot(theta,data3,'.--',label='data3')
ax1.fill(theta,data3,alpha=0.2)
ax1.plot(theta,data4,'.--',label='data4')
ax1.fill(theta,data4,alpha=0.2)
def drawRader2(target,sepal_lenth,sepal_width,petal_length,petal_width):
labels = np.array(['sepal lenth','sepal width','petal length','petal width']) # 标签
dataLenth = 150 # 数据长度
data1 = sepal_lenth
data2 = sepal_width
data3 = petal_length
data4 = petal_width
angles = np.linspace(0, 2*np.pi, dataLenth, endpoint=False) # 分割圆周长
data1 = np.concatenate((data1, [data1[0]])) # 闭合
data2 = np.concatenate((data2, [data2[0]])) # 闭合
data3 = np.concatenate((data3, [data3[0]])) # 闭合
data4 = np.concatenate((data4, [data4[0]])) # 闭合
angles = np.concatenate((angles, [angles[0]])) # 闭合
plt.figure(figsize=(16,8))
plt.polar(angles, data1, 'o-', linewidth=1) #做极坐标系
plt.fill(angles, data1, alpha=0.25)# 填充
plt.polar(angles, data2, 'o-', linewidth=1) #做极坐标系
plt.fill(angles, data2, alpha=0.25)# 填充
plt.polar(angles, data3, 'o-', linewidth=1) #做极坐标系
plt.fill(angles, data3, alpha=0.25)# 填充
plt.polar(angles, data4, 'o-', linewidth=1) #做极坐标系
plt.fill(angles, data4, alpha=0.25)# 填充
plt.thetagrids(angles * 180/np.pi, labels) # 设置网格、标签
plt.ylim(0,10) # polar的极值设置为ylim
drawRader1(target,sepal_lenth,sepal_width,petal_length,petal_width)
drawRader2(target,sepal_lenth,sepal_width,petal_length,petal_width)
for i,x_feature in enumerate(features):
drawHistogram(target,x_feature)
tem = features.copy()
tem.pop(i)
for j,y_feature in enumerate(tem):
drawScatter(target,x_feature[0],y_feature[0],x_feature[1],y_feature[1])
pass
pass
本博客所有文章除特别声明外,均采用 CC BY 4.0 CN协议 许可协议。转载请注明出处!