图像处理菜鸟

导航

【转】Matlab练习程序(各向异性扩散)

http://www.cnblogs.com/tiandsp/archive/2013/04/18/3029468.html

主要是用来平滑图像的,克服了高斯模糊的缺陷,各向异性扩散在平滑图像时是保留图像边缘的(和双边滤波很像)。

通常我们有将图像看作矩阵的,看作图的,看作随机过程的,记得过去还有看作力场的。

这次新鲜,将图像看作热量场了。每个像素看作热流,根据当前像素和周围像素的关系,来确定是否要向周围扩散。比如某个邻域像素和当前像素差别较大,则代表这个邻域像素很可能是个边界,那么当前像素就不向这个方向扩散了,这个边界也就得到保留了。

先看下效果吧:

具体的推导公式都是热学上的,自己也不太熟悉,感兴趣的可以去看原论文,引用量超7000吶。

我这里只介绍一下最终结论用到的公式。

主要迭代方程如下:

 I就是图像了,因为是个迭代公式,所以有迭代次数t

四个散度公式是在四个方向上对当前像素求偏导,news就是东南西北嘛,公式如下:

 cN/cS/cE/cW则代表四个方向上的导热系数,边界的导热系数都是小的。公式如下:

 

 最后整个公式需要先前设置的参数主要有三个,迭代次数t,根据情况设置;导热系数相关的k,取值越大越平滑,越不易保留边缘;lambda同样也是取值越大越平滑。

最后是matlab代码:

clear all;

close all;

clc;

 

k=15; %导热系数,控制平滑

lambda=0.15; %控制平滑

N=20; %迭代次数

img=double(imread('lena.jpg'));

imshow(img,[]);

[m n]=size(img);

 

imgn=zeros(m,n);

for i=1:N

 

for p=2:m-1

for q=2:n-1

%当前像素的散度,对四个方向分别求偏导,局部不同方向上的变化量,

%如果变化较多,就证明是边界,想方法保留边界

NI=img(p-1,q)-img(p,q);

SI=img(p+1,q)-img(p,q);

EI=img(p,q-1)-img(p,q);

WI=img(p,q+1)-img(p,q);

 

%四个方向上的导热系数,该方向变化越大,求得的值越小,从而达到保留边界的目的

cN=exp(-NI^2/(k*k));

cS=exp(-SI^2/(k*k));

cE=exp(-EI^2/(k*k));

cW=exp(-WI^2/(k*k));

 

imgn(p,q)=img(p,q)+lambda*(cN*NI+cS*SI+cE*EI+cW*WI); %扩散后的新值

end

end

 

img=imgn; %整个图像扩散完毕,用已扩散图像的重新扩散。

end

 

figure;

imshow(imgn,[]);

参考:

《特征提取与图像处理(第二版)》

posted on 2015-11-18 17:13  图像处理菜鸟  阅读(262)  评论(0编辑  收藏  举报