k8s 监控之展示页面Grafana
1 Grafana介绍
Grafana是一个跨平台的开源的度量分析和可视化工具,可以将采集的数据可视化的展示,并及时通知给告警接收方。它主要有以下六大特点:
1、展示方式:快速灵活的客户端图表,面板插件有许多不同方式的可视化指标和日志,官方库中具有丰富的仪表盘插件,比如热图、折线图、图表等多种展示方式;
2、数据源:Graphite,InfluxDB,OpenTSDB,Prometheus,Elasticsearch,CloudWatch和KairosDB等;
3、通知提醒:以可视方式定义最重要指标的警报规则,Grafana将不断计算并发送通知,在数据达到阈值时通过Slack、PagerDuty等获得通知;
4、混合展示:在同一图表中混合使用不同的数据源,可以基于每个查询指定数据源,甚至自定义数据源;
5、注释:使用来自不同数据源的丰富事件注释图表,将鼠标悬停在事件上会显示完整的事件元数据和标记。
编写yaml 部署文件
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 | [root@k8s-master cka] # cat grafana.yaml apiVersion: apps /v1 kind: Deployment metadata: name: monitoring-grafana namespace: kube-system spec: replicas: 1 selector: matchLabels: task: monitoring k8s-app: grafana template: metadata: labels: task: monitoring k8s-app: grafana spec: containers: - name: grafana image: k8s.gcr.io /heapster-grafana-amd64 :v5.0.4 imagePullPolicy: IfNotPresent ports: - containerPort: 3000 protocol: TCP volumeMounts: - mountPath: /etc/ssl/certs name: ca-certificates readOnly: true - mountPath: /var name: grafana-storage env : - name: INFLUXDB_HOST value: monitoring-influxdb - name: GF_SERVER_HTTP_PORT value: "3000" # The following env variables are required to make Grafana accessible via # the kubernetes api-server proxy. On production clusters, we recommend # removing these env variables, setup auth for grafana, and expose the grafana # service using a LoadBalancer or a public IP. - name: GF_AUTH_BASIC_ENABLED value: "false" - name: GF_AUTH_ANONYMOUS_ENABLED value: "true" - name: GF_AUTH_ANONYMOUS_ORG_ROLE value: Admin - name: GF_SERVER_ROOT_URL # If you're only using the API Server proxy, set this value instead: # value: /api/v1/namespaces/kube-system/services/monitoring-grafana/proxy value: / volumes: - name: ca-certificates hostPath: path: /etc/ssl/certs - name: grafana-storage emptyDir: {} --- apiVersion: v1 kind: Service metadata: labels: # For use as a Cluster add-on (https://github.com/kubernetes/kubernetes/tree/master/cluster/addons) # If you are NOT using this as an addon, you should comment out this line. kubernetes.io /cluster-service : 'true' kubernetes.io /name : monitoring-grafana name: monitoring-grafana namespace: kube-system spec: # In a production setup, we recommend accessing Grafana through an external Loadbalancer # or through a public IP. # type: LoadBalancer # You could also use NodePort to expose the service at a randomly-generated port # type: NodePort ports: - port: 80 targetPort: 3000 selector: k8s-app: grafana type : NodePort |
创建
1 2 3 | [root@k8s-master cka] # kubectl apply -f grafana.yaml deployment.apps /monitoring-grafana created service /monitoring-grafana created |
查看
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | [root@k8s-master cka] # kubectl get pod -n kube-system -owide NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES calico-kube-controllers-677cd97c8d-tcjfs 1 /1 Running 0 23h 10.244.169.129 k8s-node2 <none> <none> calico-node-29wxx 1 /1 Running 0 23h 192.168.10.50 k8s-master <none> <none> calico-node-8vv57 1 /1 Running 0 23h 192.168.10.51 k8s-node1 <none> <none> calico-node-nf6qv 1 /1 Running 0 23h 192.168.10.52 k8s-node2 <none> <none> coredns-6d8c4cb4d-f6vbx 1 /1 Running 0 23h 10.244.169.130 k8s-node2 <none> <none> coredns-6d8c4cb4d-gvkt5 1 /1 Running 0 23h 10.244.169.131 k8s-node2 <none> <none> etcd-k8s-master 1 /1 Running 0 23h 192.168.10.50 k8s-master <none> <none> kube-apiserver-k8s-master 1 /1 Running 0 23h 192.168.10.50 k8s-master <none> <none> kube-controller-manager-k8s-master 1 /1 Running 0 23h 192.168.10.50 k8s-master <none> <none> kube-proxy-fmwch 1 /1 Running 0 23h 192.168.10.51 k8s-node1 <none> <none> kube-proxy-tt9ts 1 /1 Running 0 23h 192.168.10.52 k8s-node2 <none> <none> kube-proxy-xdxsx 1 /1 Running 0 23h 192.168.10.50 k8s-master <none> <none> kube-scheduler-k8s-master 1 /1 Running 0 23h 192.168.10.50 k8s-master <none> <none> monitoring-grafana-7948df75d9-fdxs2 1 /1 Running 0 31s 10.244.36.66 k8s-node1 <none> <none> [root@k8s-master cka] # [root@k8s-master cka] # kubectl get svc -n kube-system -owide NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR kube-dns ClusterIP 10.96.0.10 <none> 53 /UDP ,53 /TCP ,9153 /TCP 23h k8s-app=kube-dns monitoring-grafana NodePort 10.108.3.145 <none> 80:31945 /TCP 2m k8s-app=grafana |
配置数据源
导入的监控模板,可在如下链接搜索
https://grafana.com/dashboards?dataSource=prometheus&search=kubernetes
可直接导入node_exporter.json监控模板,这个可以把node节点指标显示出来
安装kube-state-metrics组件
kube-state-metrics通过监听API Server生成有关资源对象的状态指标,比如Node、Pod,需要注意的是kube-state-metrics只是简单的提供一个metrics数据,并不会存储这些指标数据,所以我们可以使用Prometheus来抓取这些数据然后存储,主要关注的是业务相关的一些元数据,比如Pod副本状态等;
安装kube-state-metrics组件
1)创建sa,并对sa授权
在k8s的控制节点生成一个kube-state-metrics-rbac.yaml文件
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | [root@k8s-master cka] # cat kube-state-metrics-rbac.yaml --- apiVersion: v1 kind: ServiceAccount metadata: name: kube-state-metrics namespace: kube-system --- apiVersion: rbac.authorization.k8s.io /v1 kind: ClusterRole metadata: name: kube-state-metrics rules: - apiGroups: [ "" ] resources: [ "nodes" , "pods" , "services" , "resourcequotas" , "replicationcontrollers" , "limitranges" , "persistentvolumeclaims" , "persistentvolumes" , "namespaces" , "endpoints" ] verbs: [ "list" , "watch" ] - apiGroups: [ "extensions" ] resources: [ "daemonsets" , "deployments" , "replicasets" ] verbs: [ "list" , "watch" ] - apiGroups: [ "apps" ] resources: [ "statefulsets" ] verbs: [ "list" , "watch" ] - apiGroups: [ "batch" ] resources: [ "cronjobs" , "jobs" ] verbs: [ "list" , "watch" ] - apiGroups: [ "autoscaling" ] resources: [ "horizontalpodautoscalers" ] verbs: [ "list" , "watch" ] --- apiVersion: rbac.authorization.k8s.io /v1 kind: ClusterRoleBinding metadata: name: kube-state-metrics roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: kube-state-metrics subjects: - kind: ServiceAccount name: kube-state-metrics namespace: kube-system [root@k8s-master cka] # kubectl apply -f kube-state-metrics-rbac.yaml serviceaccount /kube-state-metrics created clusterrole.rbac.authorization.k8s.io /kube-state-metrics created clusterrolebinding.rbac.authorization.k8s.io /kube-state-metrics created |
通过kubectl apply更新资源清单yaml文件
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | [root@k8s-master cka] # cat kube-state-metrics-deploy.yaml apiVersion: apps /v1 kind: Deployment metadata: name: kube-state-metrics namespace: kube-system spec: replicas: 1 selector: matchLabels: app: kube-state-metrics template: metadata: labels: app: kube-state-metrics spec: serviceAccountName: kube-state-metrics containers: - name: kube-state-metrics image: quay.io /coreos/kube-state-metrics :v1.9.0 imagePullPolicy: IfNotPresent ports: - containerPort: 8080 [root@k8s-master cka] # kubectl apply -f kube-state-metrics-deploy.yaml deployment.apps /kube-state-metrics created |
创建service
在8s的控制节点生成一个kube-state-metrics-svc.yaml文件
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | [root@k8s-master cka] # cat kube-state-metrics-svc.yaml apiVersion: v1 kind: Service metadata: annotations: prometheus.io /scrape : 'true' name: kube-state-metrics namespace: kube-system labels: app: kube-state-metrics spec: ports: - name: kube-state-metrics port: 8080 protocol: TCP selector: app: kube-state-metrics [root@k8s-master cka] # kubectl apply -f kube-state-metrics-svc.yaml service /kube-state-metrics created |
配置alertmanager-发送报警到qq邮箱
报警:指prometheus将监测到的异常事件发送给alertmanager
通知:alertmanager将报警信息发送到邮件、微信、钉钉等
创建alertmanager配置文件
在k8s的控制节点创建alertmanager-cm.yaml文件
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | [root@k8s-master cka] # cat alertmanager-cm.yaml kind: ConfigMap apiVersion: v1 metadata: name: alertmanager namespace: monitor-sa data: alertmanager.yml: |- global: resolve_timeout: 1m smtp_smarthost: 'smtp.163.com:25' smtp_from: 'rdchenxi@163.com' smtp_auth_username: 'rdchenxi@163.com' smtp_auth_password: 'DHTTKBPNMYSGTWAW' smtp_require_tls: false route: group_by: [alertname] group_wait: 10s group_interval: 10s repeat_interval: 10m receiver: default-receiver receivers: - name: 'default-receiver' email_configs: - to: 'ruidongchenxi@163.com' send_resolved: true |
alertmanager配置文件解释说明:
smtp_smarthost: 'smtp.163.com:25'
#163邮箱的SMTP服务器地址+端口
smtp_from: '15011572657@163.com'
#这是指定从哪个邮箱发送报警
smtp_auth_username: '15011572657@163.com'
smtp_auth_password: ' BGWHYUOSOOHWEUJM'
#这是发送邮箱的授权码而不是登录密码,你们需要用自己的,不要用我的,用我的你会发不出来报警
email_configs:
- to: '1980570647@qq.com'
#to后面指定发送到哪个邮箱,我发送到我的qq邮箱,大家需要写自己的邮箱地址,不应该跟smtp_from的邮箱名字重复
route: #用于设置告警的分发策略
group_by: [alertname]
#alertmanager会根据group_by配置将Alert分组
group_wait: 10s
# 分组等待时间。也就是告警产生后等待10s,如果有同组告警一起发出
group_interval: 10s # 上下两组发送告警的间隔时间
repeat_interval: 10m # 重复发送告警的时间,减少相同邮件的发送频率,默认是1h
receiver: default-receiver #定义谁来收告警
报警处理流程如下:
1. Prometheus Server监控目标主机上暴露的http接口(这里假设接口A),通过Promethes配置的'scrape_interval'定义的时间间隔,定期采集目标主机上监控数据。
2. 当接口A不可用的时候,Server端会持续的尝试从接口中取数据,直到"scrape_timeout"时间后停止尝试。这时候把接口的状态变为“DOWN”。
3. Prometheus同时根据配置的"evaluation_interval"的时间间隔,定期(默认1min)的对Alert Rule进行评估;当到达评估周期的时候,发现接口A为DOWN,即UP=0为真,激活Alert,进入“PENDING”状态,并记录当前active的时间;
4. 当下一个alert rule的评估周期到来的时候,发现UP=0继续为真,然后判断警报Active的时间是否已经超出rule里的‘for’ 持续时间,如果未超出,则进入下一个评估周期;如果时间超出,则alert的状态变为“FIRING”;同时调用Alertmanager接口,发送相关报警数据。
5. AlertManager收到报警数据后,会将警报信息进行分组,然后根据alertmanager配置的“group_wait”时间先进行等待。等wait时间过后再发送报警信息。
6. 属于同一个Alert Group的警报,在等待的过程中可能进入新的alert,如果之前的报警已经成功发出,那么间隔“group_interval”的时间间隔后再重新发送报警信息。比如配置的是邮件报警,那么同属一个group的报警信息会汇总在一个邮件里进行发送。
7. 如果Alert Group里的警报一直没发生变化并且已经成功发送,等待‘repeat_interval’时间间隔之后再重复发送相同的报警邮件;如果之前的警报没有成功发送,则相当于触发第6条条件,则需要等待group_interval时间间隔后重复发送。
编辑prometheus-alertmanager-cfg.yaml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 | [root@k8s-master cka] # cat prometheus-alertmanager-cfg.yaml kind: ConfigMap apiVersion: v1 metadata: labels: app: prometheus name: prometheus-config namespace: monitor-sa data: prometheus.yml: | rule_files: - /etc/prometheus/rules .yml alerting: alertmanagers: - static_configs: - targets: [ "localhost:9093" ] global: scrape_interval: 15s scrape_timeout: 10s evaluation_interval: 1m scrape_configs: - job_name: 'kubernetes-node' kubernetes_sd_configs: - role: node relabel_configs: - source_labels: [__address__] regex: '(.*):10250' replacement: '${1}:9100' target_label: __address__ action: replace - action: labelmap regex: __meta_kubernetes_node_label_(.+) - job_name: 'kubernetes-node-cadvisor' kubernetes_sd_configs: - role: node scheme: https tls_config: ca_file: /var/run/secrets/kubernetes .io /serviceaccount/ca .crt bearer_token_file: /var/run/secrets/kubernetes .io /serviceaccount/token relabel_configs: - action: labelmap regex: __meta_kubernetes_node_label_(.+) - target_label: __address__ replacement: kubernetes.default.svc:443 - source_labels: [__meta_kubernetes_node_name] regex: (.+) target_label: __metrics_path__ replacement: /api/v1/nodes/ ${1} /proxy/metrics/cadvisor - job_name: 'kubernetes-apiserver' kubernetes_sd_configs: - role: endpoints scheme: https tls_config: ca_file: /var/run/secrets/kubernetes .io /serviceaccount/ca .crt bearer_token_file: /var/run/secrets/kubernetes .io /serviceaccount/token relabel_configs: - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name] action: keep regex: default;kubernetes;https - job_name: 'kubernetes-service-endpoints' kubernetes_sd_configs: - role: endpoints relabel_configs: - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape] action: keep regex: true - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme] action: replace target_label: __scheme__ regex: (https?) - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path] action: replace target_label: __metrics_path__ regex: (.+) - source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port] action: replace target_label: __address__ regex: ([^:]+)(?::\d+)?;(\d+) replacement: $1:$2 - action: labelmap regex: __meta_kubernetes_service_label_(.+) - source_labels: [__meta_kubernetes_namespace] action: replace target_label: kubernetes_namespace - source_labels: [__meta_kubernetes_service_name] action: replace target_label: kubernetes_name - job_name: 'kubernetes-pods' kubernetes_sd_configs: - role: pod relabel_configs: - action: keep regex: true source_labels: - __meta_kubernetes_pod_annotation_prometheus_io_scrape - action: replace regex: (.+) source_labels: - __meta_kubernetes_pod_annotation_prometheus_io_path target_label: __metrics_path__ - action: replace regex: ([^:]+)(?::\d+)?;(\d+) replacement: $1:$2 source_labels: - __address__ - __meta_kubernetes_pod_annotation_prometheus_io_port target_label: __address__ - action: labelmap regex: __meta_kubernetes_pod_label_(.+) - action: replace source_labels: - __meta_kubernetes_namespace target_label: kubernetes_namespace - action: replace source_labels: - __meta_kubernetes_pod_name target_label: kubernetes_pod_name - job_name: 'kubernetes-etcd' scheme: https tls_config: ca_file: /var/run/secrets/kubernetes .io /k8s-certs/etcd/ca .crt cert_file: /var/run/secrets/kubernetes .io /k8s-certs/etcd/server .crt key_file: /var/run/secrets/kubernetes .io /k8s-certs/etcd/server .key scrape_interval: 5s static_configs: - targets: [ '192.168.40.180:2379' ] rules.yml: | groups : - name: example rules: - alert: apiserver的cpu使用率大于80% expr : rate(process_cpu_seconds_total{job=~ "kubernetes-apiserver" }[1m]) * 100 > 80 for : 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%" - alert: apiserver的cpu使用率大于90% expr : rate(process_cpu_seconds_total{job=~ "kubernetes-apiserver" }[1m]) * 100 > 90 for : 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%" - alert: etcd的cpu使用率大于80% expr : rate(process_cpu_seconds_total{job=~ "kubernetes-etcd" }[1m]) * 100 > 80 for : 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%" - alert: etcd的cpu使用率大于90% expr : rate(process_cpu_seconds_total{job=~ "kubernetes-etcd" }[1m]) * 100 > 90 for : 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%" - alert: kube-state-metrics的cpu使用率大于80% expr : rate(process_cpu_seconds_total{k8s_app=~ "kube-state-metrics" }[1m]) * 100 > 80 for : 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%" value: "{{ $value }}%" threshold: "80%" - alert: kube-state-metrics的cpu使用率大于90% expr : rate(process_cpu_seconds_total{k8s_app=~ "kube-state-metrics" }[1m]) * 100 > 0 for : 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%" value: "{{ $value }}%" threshold: "90%" - alert: coredns的cpu使用率大于80% expr : rate(process_cpu_seconds_total{k8s_app=~ "kube-dns" }[1m]) * 100 > 80 for : 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%" value: "{{ $value }}%" threshold: "80%" - alert: coredns的cpu使用率大于90% expr : rate(process_cpu_seconds_total{k8s_app=~ "kube-dns" }[1m]) * 100 > 90 for : 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%" value: "{{ $value }}%" threshold: "90%" - alert: kube-proxy打开句柄数>600 expr : process_open_fds{job=~ "kubernetes-kube-proxy" } > 600 for : 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600" value: "{{ $value }}" - alert: kube-proxy打开句柄数>1000 expr : process_open_fds{job=~ "kubernetes-kube-proxy" } > 1000 for : 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000" value: "{{ $value }}" - alert: kubernetes-schedule打开句柄数>600 expr : process_open_fds{job=~ "kubernetes-schedule" } > 600 for : 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600" value: "{{ $value }}" - alert: kubernetes-schedule打开句柄数>1000 expr : process_open_fds{job=~ "kubernetes-schedule" } > 1000 for : 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000" value: "{{ $value }}" - alert: kubernetes-controller-manager打开句柄数>600 expr : process_open_fds{job=~ "kubernetes-controller-manager" } > 600 for : 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600" value: "{{ $value }}" - alert: kubernetes-controller-manager打开句柄数>1000 expr : process_open_fds{job=~ "kubernetes-controller-manager" } > 1000 for : 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000" value: "{{ $value }}" - alert: kubernetes-apiserver打开句柄数>600 expr : process_open_fds{job=~ "kubernetes-apiserver" } > 600 for : 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600" value: "{{ $value }}" - alert: kubernetes-apiserver打开句柄数>1000 expr : process_open_fds{job=~ "kubernetes-apiserver" } > 1000 for : 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000" value: "{{ $value }}" - alert: kubernetes-etcd打开句柄数>600 expr : process_open_fds{job=~ "kubernetes-etcd" } > 600 for : 2s labels: severity: warnning annotations: description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600" value: "{{ $value }}" - alert: kubernetes-etcd打开句柄数>1000 expr : process_open_fds{job=~ "kubernetes-etcd" } > 1000 for : 2s labels: severity: critical annotations: description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000" value: "{{ $value }}" - alert: coredns expr : process_open_fds{k8s_app=~ "kube-dns" } > 600 for : 2s labels: severity: warnning annotations: description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过600" value: "{{ $value }}" - alert: coredns expr : process_open_fds{k8s_app=~ "kube-dns" } > 1000 for : 2s labels: severity: critical annotations: description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过1000" value: "{{ $value }}" - alert: kube-proxy expr : process_virtual_memory_bytes{job=~ "kubernetes-kube-proxy" } > 2000000000 for : 2s labels: severity: warnning annotations: description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G" value: "{{ $value }}" - alert: scheduler expr : process_virtual_memory_bytes{job=~ "kubernetes-schedule" } > 2000000000 for : 2s labels: severity: warnning annotations: description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G" value: "{{ $value }}" - alert: kubernetes-controller-manager expr : process_virtual_memory_bytes{job=~ "kubernetes-controller-manager" } > 2000000000 for : 2s labels: severity: warnning annotations: description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G" value: "{{ $value }}" - alert: kubernetes-apiserver expr : process_virtual_memory_bytes{job=~ "kubernetes-apiserver" } > 2000000000 for : 2s labels: severity: warnning annotations: description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G" value: "{{ $value }}" - alert: kubernetes-etcd expr : process_virtual_memory_bytes{job=~ "kubernetes-etcd" } > 2000000000 for : 2s labels: severity: warnning annotations: description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G" value: "{{ $value }}" - alert: kube-dns expr : process_virtual_memory_bytes{k8s_app=~ "kube-dns" } > 2000000000 for : 2s labels: severity: warnning annotations: description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 使用虚拟内存超过2G" value: "{{ $value }}" - alert: HttpRequestsAvg expr : sum (rate(rest_client_requests_total{job=~ "kubernetes-kube-proxy|kubernetes-kubelet|kubernetes-schedule|kubernetes-control-manager|kubernetes-apiservers" }[1m])) > 1000 for : 2s labels: team: admin annotations: description: "组件{{$labels.job}}({{$labels.instance}}): TPS超过1000" value: "{{ $value }}" threshold: "1000" - alert: Pod_restarts expr : kube_pod_container_status_restarts_total{namespace=~ "kube-system|default|monitor-sa" } > 0 for : 2s labels: severity: warnning annotations: description: "在{{$labels.namespace}}名称空间下发现{{$labels.pod}}这个pod下的容器{{$labels.container}}被重启,这个监控指标是由{{$labels.instance}}采集的" value: "{{ $value }}" threshold: "0" - alert: Pod_waiting expr : kube_pod_container_status_waiting_reason{namespace=~ "kube-system|default" } == 1 for : 2s labels: team: admin annotations: description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.pod}}下的{{$labels.container}}启动异常等待中" value: "{{ $value }}" threshold: "1" - alert: Pod_terminated expr : kube_pod_container_status_terminated_reason{namespace=~ "kube-system|default|monitor-sa" } == 1 for : 2s labels: team: admin annotations: description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.pod}}下的{{$labels.container}}被删除" value: "{{ $value }}" threshold: "1" - alert: Etcd_leader expr : etcd_server_has_leader{job= "kubernetes-etcd" } == 0 for : 2s labels: team: admin annotations: description: "组件{{$labels.job}}({{$labels.instance}}): 当前没有leader" value: "{{ $value }}" threshold: "0" - alert: Etcd_leader_changes expr : rate(etcd_server_leader_changes_seen_total{job= "kubernetes-etcd" }[1m]) > 0 for : 2s labels: team: admin annotations: description: "组件{{$labels.job}}({{$labels.instance}}): 当前leader已发生改变" value: "{{ $value }}" threshold: "0" - alert: Etcd_failed expr : rate(etcd_server_proposals_failed_total{job= "kubernetes-etcd" }[1m]) > 0 for : 2s labels: team: admin annotations: description: "组件{{$labels.job}}({{$labels.instance}}): 服务失败" value: "{{ $value }}" threshold: "0" - alert: Etcd_db_total_size expr : etcd_debugging_mvcc_db_total_size_in_bytes{job= "kubernetes-etcd" } > 10000000000 for : 2s labels: team: admin annotations: description: "组件{{$labels.job}}({{$labels.instance}}):db空间超过10G" value: "{{ $value }}" threshold: "10G" - alert: Endpoint_ready expr : kube_endpoint_address_not_ready{namespace=~ "kube-system|default" } == 1 for : 2s labels: team: admin annotations: description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.endpoint}}不可用" value: "{{ $value }}" threshold: "1" - name: 物理节点状态-监控告警 rules: - alert: 物理节点cpu使用率 expr : 100-avg(irate(node_cpu_seconds_total{mode= "idle" }[5m])) by(instance)*100 > 90 for : 2s labels: severity: ccritical annotations: summary: "{{ $labels.instance }}cpu使用率过高" description: "{{ $labels.instance }}的cpu使用率超过90%,当前使用率[{{ $value }}],需要排查处理" - alert: 物理节点内存使用率 expr : (node_memory_MemTotal_bytes - (node_memory_MemFree_bytes + node_memory_Buffers_bytes + node_memory_Cached_bytes)) / node_memory_MemTotal_bytes * 100 > 90 for : 2s labels: severity: critical annotations: summary: "{{ $labels.instance }}内存使用率过高" description: "{{ $labels.instance }}的内存使用率超过90%,当前使用率[{{ $value }}],需要排查处理" - alert: InstanceDown expr : up == 0 for : 2s labels: severity: critical annotations: summary: "{{ $labels.instance }}: 服务器宕机" description: "{{ $labels.instance }}: 服务器延时超过2分钟" - alert: 物理节点磁盘的IO性能 expr : 100-(avg(irate(node_disk_io_time_seconds_total[1m])) by(instance)* 100) < 60 for : 2s labels: severity: critical annotations: summary: "{{$labels.mountpoint}} 流入磁盘IO使用率过高!" description: "{{$labels.mountpoint }} 流入磁盘IO大于60%(目前使用:{{$value}})" - alert: 入网流量带宽 expr : (( sum (rate (node_network_receive_bytes_total{device!~ 'tap.*|veth.*|br.*|docker.*|virbr*|lo*' }[5m])) by (instance)) / 100) > 102400 for : 2s labels: severity: critical annotations: summary: "{{$labels.mountpoint}} 流入网络带宽过高!" description: "{{$labels.mountpoint }}流入网络带宽持续5分钟高于100M. RX带宽使用率{{$value}}" - alert: 出网流量带宽 expr : (( sum (rate (node_network_transmit_bytes_total{device!~ 'tap.*|veth.*|br.*|docker.*|virbr*|lo*' }[5m])) by (instance)) / 100) > 102400 for : 2s labels: severity: critical annotations: summary: "{{$labels.mountpoint}} 流出网络带宽过高!" description: "{{$labels.mountpoint }}流出网络带宽持续5分钟高于100M. RX带宽使用率{{$value}}" - alert: TCP会话 expr : node_netstat_Tcp_CurrEstab > 1000 for : 2s labels: severity: critical annotations: summary: "{{$labels.mountpoint}} TCP_ESTABLISHED过高!" description: "{{$labels.mountpoint }} TCP_ESTABLISHED大于1000%(目前使用:{{$value}}%)" - alert: 磁盘容量 expr : 100-(node_filesystem_free_bytes{fstype=~ "ext4|xfs" } /node_filesystem_size_bytes {fstype=~ "ext4|xfs" }*100) > 80 for : 2s labels: severity: critical annotations: summary: "{{$labels.mountpoint}} 磁盘分区使用率过高!" description: "{{$labels.mountpoint }} 磁盘分区使用大于80%(目前使用:{{$value}}%)" |
创建
1 2 | [root@k8s-master cka] # kubectl apply -f prometheus-alertmanager-cfg.yaml configmap /prometheus-config unchanged |
生成一个etcd-certs,这个在部署prometheus需要
1 2 | [root@k8s-master cka] # kubectl -n monitor-sa create secret generic etcd-certs --from-file=/etc/kubernetes/pki/etcd/server.key --from-file=/etc/kubernetes/pki/etcd/server.crt --from-file=/etc/kubernetes/pki/et cd /ca .crt |
编写prometheus-alertmanager-deploy.yaml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 | [root@k8s-master cka] # cat prometheus-alertmanager-deploy.yaml --- apiVersion: apps /v1 kind: Deployment metadata: name: prometheus-server namespace: monitor-sa labels: app: prometheus spec: replicas: 1 selector: matchLabels: app: prometheus component: server #matchExpressions: #- {key: app, operator: In, values: [prometheus]} #- {key: component, operator: In, values: [server]} template: metadata: labels: app: prometheus component: server annotations: prometheus.io /scrape : 'false' spec: nodeName: xianchaonode1 serviceAccountName: monitor containers: - name: prometheus image: prom /prometheus :v2.2.1 imagePullPolicy: IfNotPresent command : - "/bin/prometheus" args: - "--config.file=/etc/prometheus/prometheus.yml" - "--storage.tsdb.path=/prometheus" - "--storage.tsdb.retention=24h" - "--web.enable-lifecycle" ports: - containerPort: 9090 protocol: TCP volumeMounts: - mountPath: /etc/prometheus name: prometheus-config - mountPath: /prometheus/ name: prometheus-storage-volume - name: k8s-certs mountPath: /var/run/secrets/kubernetes .io /k8s-certs/etcd/ - name: alertmanager image: prom /alertmanager :v0.14.0 imagePullPolicy: IfNotPresent args: - "--config.file=/etc/alertmanager/alertmanager.yml" - "--log.level=debug" ports: - containerPort: 9093 protocol: TCP name: alertmanager volumeMounts: - name: alertmanager-config mountPath: /etc/alertmanager - name: alertmanager-storage mountPath: /alertmanager - name: localtime mountPath: /etc/localtime volumes: - name: prometheus-config configMap: name: prometheus-config - name: prometheus-storage-volume hostPath: path: /data type : Directory - name: k8s-certs secret: secretName: etcd-certs - name: alertmanager-config configMap: name: alertmanager - name: alertmanager-storage hostPath: path: /data/alertmanager type : DirectoryOrCreate - name: localtime hostPath: path: /usr/share/zoneinfo/Asia/Shanghai |
创建
1 2 | [root@k8s-master cka] # kubectl apply -f prometheus-alertmanager-deploy.yaml deployment.apps /prometheus-server configured |
编写创建svc
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | [root@k8s-master cka] # kubectl apply -f alertmanager-svc.yaml service /alertmanager created [root@k8s-master cka] # cat alertmanager-svc.yaml --- apiVersion: v1 kind: Service metadata: labels: name: prometheus kubernetes.io /cluster-service : 'true' name: alertmanager namespace: monitor-sa spec: ports: - name: alertmanager nodePort: 30066 port: 9093 protocol: TCP targetPort: 9093 selector: app: prometheus sessionAffinity: None type : NodePort |
http://192.168.10.50:30194/targets
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· 记一次.NET内存居高不下排查解决与启示