首先我们对每天的股票价格做差分,得到差分序列$a[1], a[2] ... a[k - 1]$

则对已一个给定的序列,满足这个差分序列的答案共有$n - \sum_{i = 1} ^{k - 1} a[i]$

故总的答案$ans = \sum (n - \sum_{i = 1} ^{k - 1} a[i])$

把n提出来,有$ans = n * m ^ {k - 1} - \sum (\sum_{i = 1} ^{k - 1} a[i])$

我们来看这个东西$A = \sum (\sum_{i = 1} ^{k - 1} a[i])$会发现里面的每个$a[i]$是独立的

故对于每个$a[i]$,它对于$T$的贡献是$m ^ {k - 2} * \sum_{a[i] = 1}^{m} = m ^ {k - 2} * \frac{m (m + 1)} {2}$

所以$ans = n * m ^ {k - 1} - (k - 1) * \frac{m^{k - 1} * (m + 1)} {2}$

 

 1 /**************************************************************
 2     Problem: 3142
 3     User: rausen
 4     Language: Python
 5     Result: Accepted
 6     Time:80 ms
 7     Memory:6360 kb
 8 ****************************************************************/
 9  
10 def pow(x, y) :
11     res = 1
12     while (y > 0) :
13         if (y & 1) : res = res * x % p
14         x = x * x % p
15         y = y >> 1
16     return res
17  
18 n, k, m, p = [int(i) for i in raw_input().split()]
19 print pow(m, k - 2) * (m * n - (k - 1) * m * (m + 1) / 2) % p
View Code

 

posted on 2015-05-23 10:14  Xs酱~  阅读(531)  评论(0编辑  收藏  举报