就是给一个数列,维护操作:(1)加一个数(2)求当前全部数的第K大。。。

看了Claris大爷的做法深有启发,于是本蒟蒻的替罪羊树的第一次就没了。。。

写完才发现。。。Orz主席树怎么忘了、、、貌似实现更简单啊!!!

不管了QAQ

 

  1 /**************************************************************
  2     Problem: 3570
  3     User: rausen
  4     Language: C++
  5     Result: Accepted
  6     Time:2284 ms
  7     Memory:6288 kb
  8 ****************************************************************/
  9  
 10 #include <cstdio>
 11 #include <cmath>
 12  
 13 using namespace std;
 14 typedef long long ll;
 15 typedef double lf;
 16 const lf A = 0.8;
 17 const int N = 200005;
 18  
 19 int n, C;
 20 int size[N], son[N][2], val[N], f[N], tot, root;
 21 int data[N], id[N], cnt;
 22  
 23 inline int read() {
 24     int x = 0;
 25     char ch = getchar();
 26     while (ch < '0' || '9' < ch)
 27         ch = getchar();
 28     while ('0' <= ch && ch <= '9') {
 29         x = x * 10 + ch - '0';
 30         ch = getchar();
 31     }
 32     return x;
 33 }
 34  
 35 int ins(int x, int p) {
 36     ++size[x];
 37     int S = p >= val[x];
 38     if (!son[x][S]) {
 39         son[x][S] = ++tot;
 40         f[tot] = x, size[tot] = 1, val[tot] = p;
 41         return tot;
 42     }else return ins(son[x][S], p);
 43 }
 44  
 45 int build(int fa, int l, int r) {
 46     int mid = l + r >> 1, x = id[mid];
 47     f[x] = fa, son[x][0] = son[x][1] = 0, size[x] = 1;
 48     val[x] = data[mid];
 49     if (l == r) return x;
 50     if (l < mid) size[x] += size[son[x][0] = build(x, l, mid - 1)];
 51     if (mid < r) size[x] += size[son[x][1] = build(x, mid + 1, r)];
 52     return x;
 53 }
 54  
 55 void dfs(int x) {
 56     if (son[x][0]) dfs(son[x][0]);
 57     data[++cnt] = val[x], id[cnt] = x;
 58     if (son[x][1]) dfs(son[x][1]);
 59 }
 60  
 61 inline int rebuild(int x) {
 62     cnt = 0;
 63     dfs(x);
 64     return build(f[x], 1, cnt);
 65 }
 66  
 67 inline void insert(int p) {
 68     if (!root) {
 69         root = tot = size[1] = 1;
 70         val[1] = p;
 71         return;
 72     }
 73     int x = ins(root, p), dep = 0, z = x;
 74     while (f[z]) z = f[z], ++dep;
 75     if (dep < log(tot) / log(1 / A)) return;
 76     while ((lf) size[son[x][0]] < A * size[x] && (lf)size[son[x][1]] < A * size[x])
 77         x = f[x];
 78     if (!x) return;
 79     if (x == root) {
 80         root = rebuild(x);
 81         return;
 82     }
 83     int y = f[x], S = son[y][1] == x;
 84     son[y][S] = rebuild(x);
 85 }
 86  
 87 inline int find_kth(int k) {
 88     int x = root, sum;
 89     while (1) {
 90         sum = size[son[x][0]] + 1;
 91         if (k == sum) return val[x];
 92         if (k < sum) x = son[x][0];
 93         else k -= sum, x = son[x][1];
 94     }
 95 }
 96  
 97 int main() {
 98     int x, y, z;
 99     n = read(), C = read();
100     while (n--) {
101         x = read(), read(), read();
102         insert(x);
103     }
104     n = read();
105     while (n--) {
106         x = read();
107         if (x) {
108             y = read(), z = find_kth(read());
109             printf("%.3lf\n", sqrt((ll) 2 * C * y + (ll) z * z));
110         } else
111             insert(read()), read(), read();
112     }
113     return 0;
114 }
View Code

 

posted on 2014-11-16 20:12  Xs酱~  阅读(465)  评论(4编辑  收藏  举报