这是一道思维复杂度很高的DP题
看题目,为什么是取两次序列一样呢?YY一下,其实等价于两个人一起取,最后序列一样。
然后就水了:
令f[i, j, k]表示取到第i个珠子,第一个人在1号管道取了j个珠子,第二个人在1号管道取了k个珠子时,他们取出的序列相等的方案数
于是真水了!!!(方程请自行脑补或看程序呗)
然后我那坑爹的编程能力,1个小时啊大爷的。。。
1 /************************************************************** 2 Problem: 1566 3 User: rausen 4 Language: Pascal 5 Result: Accepted 6 Time:11920 ms 7 Memory:3592 kb 8 ****************************************************************/ 9 10 const prime = 1024523; 11 12 var 13 s1, s2 : array[0..600] of char; 14 m, n, i, j, k, j1, k1 : longint; 15 p, q : longint; 16 f : array[0..1, 0..600, 0..600] of longint; 17 18 procedure reverse; 19 var 20 s : ansistring; 21 i : longint; 22 23 begin 24 readln(s); 25 for i := 1 to m do 26 s1[m - i + 1] := s[i]; 27 readln(s); 28 for i := 1 to n do 29 s2[n - i + 1] := s[i]; 30 end; 31 32 begin 33 readln(m, n); 34 reverse; 35 f[0, 1, 1] := 1; 36 for i := 1 to m + n + 1 do begin 37 p := i mod 2; 38 q := p xor 1; 39 fillchar(f[p], sizeof(f[p]), 0); 40 for j := 1 to m + 1 do 41 for k := 1 to m + 1 do 42 while f[q, j, k] >= prime do 43 dec(f[q, j, k], prime); 44 for j := 1 to m + 1 do 45 for k := 1 to m + 1 do begin 46 j1 := i - j + 1; 47 k1 := i - k + 1; 48 if (j1 > 0) and (k1 > 0) and (j1 <= n + 1) and (k1 <= n + 1) then begin 49 if s1[j] = s1[k] then inc(f[p, j + 1, k + 1], f[q, j, k]); 50 if s1[j] = s2[k1] then inc(f[p, j + 1, k], f[q, j ,k]); 51 if s2[j1] = s1[k] then inc(f[p, j, k + 1], f[q, j ,k]); 52 if s2[j1] = s2[k1] then inc(f[p, j, k], f[q, j, k]); 53 end; 54 end; 55 end; 56 writeln(f[q, m + 1, m + 1]); 57 end.
(p.s. 上面↑是以前打的,所以还是Pascal写的)
By Xs酱~ 转载请说明
博客地址:http://www.cnblogs.com/rausen