使用Tensorflow object detection API——训练模型(Window10系统)

 

【数据标注处理】

  1、先将下载好的图片训练数据放在models-master/research/images文件夹下,并分别为训练数据和测试数据创建train、test两个文件夹。文件夹目录如下

  

  2、下载 LabelImg 这款小软件对图片进行标注

  3、下载完成后解压,直接运行。(注:软件目录最好不要存在中文,否则可能会报错)

  4、设置图片目录,逐张打开图片,按快捷键W,然后通过鼠标拖拽实现目标物体框选,随后输入物体类别,单张图片多目标则重复操作,目标框选完成后,保存操作。

  5、重复上述操作,直至所有图片完成选定。

 

 

 

【图片标注数据处理】

  1、打开xml_to_csv.py,修改path 为对应train、test文件夹路径,并运行,在对应目录下将会生成csv文件,将生成的csv文件拷贝到models-master\research\object_detection\data文件夹下。

 

# -*- coding: utf-8 -*-
"""
Created on Sat Apr 14 10:01:27 2018

@author: Administrator
"""
# -*- coding: utf-8 -*-  
""" 
Created on Tue Jan 16 00:52:02 2018 
@author: Xiang Guo 
将文件夹内所有XML文件的信息记录到CSV文件中 
"""  
  
import os  
import glob  
import pandas as pd  
import xml.etree.ElementTree as ET  

#XML文件路径
pathStr='F:\\模型训练\\img\\train';
  
os.chdir(pathStr)  
path = pathStr  
  
def xml_to_csv(path):  
    xml_list = []  
    for xml_file in glob.glob(path + '/*.xml'):  
        tree = ET.parse(xml_file)  
        root = tree.getroot()  
        for member in root.findall('object'):  
            value = (root.find('filename').text,  
                     int(root.find('size')[0].text),  
                     int(root.find('size')[1].text),  
                     member[0].text,  
                     int(member[4][0].text),  
                     int(member[4][1].text),  
                     int(member[4][2].text),  
                     int(member[4][3].text)  
                     )  
            xml_list.append(value)  
    column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax']  
    xml_df = pd.DataFrame(xml_list, columns=column_name)  
    return xml_df  
  
  
def main():  
    image_path = path  
    xml_df = xml_to_csv(image_path)  
    xml_df.to_csv('person.csv', index=None)  
    print('Successfully converted xml to csv.')  
  
  
main()  
View Code

 

  2、打开python generate_tfrecord.py,将对应的label改成自己的类别,python generate_tfrecord.py --csv_input=data/person_train.csv  --output_path=data/person_train.record,输入对应train、test.csv文件路径,生成对应tfrecord数据文件。

# -*- coding: utf-8 -*-
"""
Created on Sat Apr 14 10:04:27 2018

@author: Administrator
"""

# -*- coding: utf-8 -*-  
""" 
由CSV文件生成TFRecord文件 
"""  
  
""" 
Usage: 
  # From tensorflow/models/ 
  # Create train data: 
  python csv_to_TFRecords.py --csv_input=data/train_labels.csv  --output_path=data/person_train.record 
  # Create test data: 
  python csv_to_TFRecords.py --csv_input=data/test_labels.csv  --output_path=test.record 
"""  
  
  
  
import os  
import io  
import pandas as pd  
import tensorflow as tf  
  
from PIL import Image  
from object_detection.utils import dataset_util  
from collections import namedtuple, OrderedDict  
  
#这改成object_detection路径
os.chdir('F:\\模型训练\\models-master\\research\\object_detection\\')  
  
flags = tf.app.flags  
flags.DEFINE_string('csv_input', '', 'Path to the CSV input')  
flags.DEFINE_string('output_path', '', 'Path to output TFRecord')  
FLAGS = flags.FLAGS  
  
  
# TO-DO replace this with label map  
#注意将对应的label改成自己的类别!!!!!!!!!!  
def class_text_to_int(row_label):  
    if row_label == 'person':  
        return 1  
    else:  
        None  
  
  
def split(df, group):  
    data = namedtuple('data', ['filename', 'object'])  
    gb = df.groupby(group)  
    return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]  
  
  
def create_tf_example(group, path):  
    with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid:  
        encoded_jpg = fid.read()  
    encoded_jpg_io = io.BytesIO(encoded_jpg)  
    image = Image.open(encoded_jpg_io)  
    width, height = image.size  
  
    filename = group.filename.encode('utf8')  
    image_format = b'jpg'  
    xmins = []  
    xmaxs = []  
    ymins = []  
    ymaxs = []  
    classes_text = []  
    classes = []  
  
    for index, row in group.object.iterrows():  
        xmins.append(row['xmin'] / width)  
        xmaxs.append(row['xmax'] / width)  
        ymins.append(row['ymin'] / height)  
        ymaxs.append(row['ymax'] / height)  
        classes_text.append(row['class'].encode('utf8'))  
        classes.append(class_text_to_int(row['class']))  
  
    tf_example = tf.train.Example(features=tf.train.Features(feature={  
        'image/height': dataset_util.int64_feature(height),  
        'image/width': dataset_util.int64_feature(width),  
        'image/filename': dataset_util.bytes_feature(filename),  
        'image/source_id': dataset_util.bytes_feature(filename),  
        'image/encoded': dataset_util.bytes_feature(encoded_jpg),  
        'image/format': dataset_util.bytes_feature(image_format),  
        'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),  
        'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),  
        'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),  
        'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),  
        'image/object/class/text': dataset_util.bytes_list_feature(classes_text),  
        'image/object/class/label': dataset_util.int64_list_feature(classes),  
    }))  
    return tf_example  
  
  
def main(_):  
    writer = tf.python_io.TFRecordWriter(FLAGS.output_path)  
    path = os.path.join(os.getcwd(), 'images')  
    examples = pd.read_csv(FLAGS.csv_input)  
    grouped = split(examples, 'filename')  
    for group in grouped:  
        tf_example = create_tf_example(group, path)  
        writer.write(tf_example.SerializeToString())  
  
    writer.close()  
    output_path = os.path.join(os.getcwd(), FLAGS.output_path)  
    print('Successfully created the TFRecords: {}'.format(output_path))  
  
  
if __name__ == '__main__':  
    tf.app.run()  
View Code

 

  3、打开或下载ssd_mobilenet_v1_coco.config配置文件,修改训练、测试数据路径、分类数、批次图片数量(避免超出显存,稍微小点),放置在models-master\research\object_detection\training文件夹下。

# SSD with Mobilenet v1 configuration for MSCOCO Dataset.
# Users should configure the fine_tune_checkpoint field in the train config as
# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured.

model {
  ssd {
  #训练的数据类数
    num_classes: 1
    box_coder {
      faster_rcnn_box_coder {
        y_scale: 10.0
        x_scale: 10.0
        height_scale: 5.0
        width_scale: 5.0
      }
    }
    matcher {
      argmax_matcher {
        matched_threshold: 0.5
        unmatched_threshold: 0.5
        ignore_thresholds: false
        negatives_lower_than_unmatched: true
        force_match_for_each_row: true
      }
    }
    similarity_calculator {
      iou_similarity {
      }
    }
    anchor_generator {
      ssd_anchor_generator {
        num_layers: 6
        min_scale: 0.2
        max_scale: 0.95
        aspect_ratios: 1.0
        aspect_ratios: 2.0
        aspect_ratios: 0.5
        aspect_ratios: 3.0
        aspect_ratios: 0.3333
      }
    }
    image_resizer {
      fixed_shape_resizer {
        height: 300
        width: 300
      }
    }
    box_predictor {
      convolutional_box_predictor {
        min_depth: 0
        max_depth: 0
        num_layers_before_predictor: 0
        use_dropout: false
        dropout_keep_probability: 0.8
        kernel_size: 1
        box_code_size: 4
        apply_sigmoid_to_scores: false
        conv_hyperparams {
          activation: RELU_6,
          regularizer {
            l2_regularizer {
              weight: 0.00004
            }
          }
          initializer {
            truncated_normal_initializer {
              stddev: 0.03
              mean: 0.0
            }
          }
          batch_norm {
            train: true,
            scale: true,
            center: true,
            decay: 0.9997,
            epsilon: 0.001,
          }
        }
      }
    }
    feature_extractor {
      type: 'ssd_mobilenet_v1'
      min_depth: 16
      depth_multiplier: 1.0
      conv_hyperparams {
        activation: RELU_6,
        regularizer {
          l2_regularizer {
            weight: 0.00004
          }
        }
        initializer {
          truncated_normal_initializer {
            stddev: 0.03
            mean: 0.0
          }
        }
        batch_norm {
          train: true,
          scale: true,
          center: true,
          decay: 0.9997,
          epsilon: 0.001,
        }
      }
    }
    loss {
      classification_loss {
        weighted_sigmoid {
        }
      }
      localization_loss {
        weighted_smooth_l1 {
        }
      }
      hard_example_miner {
        num_hard_examples: 3000
        iou_threshold: 0.99
        loss_type: CLASSIFICATION
        max_negatives_per_positive: 3
        min_negatives_per_image: 0
      }
      classification_weight: 1.0
      localization_weight: 1.0
    }
    normalize_loss_by_num_matches: true
    post_processing {
      batch_non_max_suppression {
        score_threshold: 1e-8
        iou_threshold: 0.6
        max_detections_per_class: 100
        max_total_detections: 100
      }
      score_converter: SIGMOID
    }
  }
}

train_config: {
  batch_size: 1#训练批次
  optimizer {
    rms_prop_optimizer: {
      learning_rate: {
        exponential_decay_learning_rate {
          initial_learning_rate: 0.004
          decay_steps: 800720
          decay_factor: 0.95
        }
      }
      momentum_optimizer_value: 0.9
      decay: 0.9
      epsilon: 1.0
    }
  }
  #这两行注释
  #fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt"
  #from_detection_checkpoint: true

  # Note: The below line limits the training process to 200K steps, which we
  # empirically found to be sufficient enough to train the pets dataset. This
  # effectively bypasses the learning rate schedule (the learning rate will
  # never decay). Remove the below line to train indefinitely.
  num_steps: 200000
  data_augmentation_options {
    random_horizontal_flip {
    }
  }
  data_augmentation_options {
    ssd_random_crop {
    }
  }
}
#训练数据
train_input_reader: {
  tf_record_input_reader {
    input_path: "data/person_train.record"
  }
  label_map_path: "data/person.pbtxt"
}

eval_config: {
  num_examples: 8000
  # Note: The below line limits the evaluation process to 10 evaluations.
  # Remove the below line to evaluate indefinitely.
  max_evals: 10
}
#测试数据
eval_input_reader: {
  tf_record_input_reader {
    input_path: "data/person_test.record"
  }
  label_map_path: "data/person.pbtxt"
  shuffle: false
  num_readers: 1
}
View Code

 

  4、在data文件下创建对应.pbtxt文件,修改类型对应的ID序号,id序号注意与前面创建CSV文件时保持一致。

 

item {  
  id: 1  
  name: 'person'  
}  
  
item {  
  id: 2  
  name: 'car'  
}

【训练模型】

  1、在models-master\research\object_detection目录下运行python train.py --logtostderr --train_dir=training/ --pipeline_config_path=training/ssd_mobilenet_v1_coco.config 

  

  2、等待loss稳定在一个比较小的值之间,则可以停止训练。(直接关闭窗口以上即可)

  3、可视化操作:在models-master\research\object_detection文件夹下,运行tensorboard --logdir='training' ,然后在浏览器中输入localhost:6006即可查看模型训练的各项参数情况。

4、Anaconda Prompt 定位到  models\research\object_detection 文件夹下,运行

python export_inference_graph.py \ --input_type image_tensor \ --pipeline_config_path training/ssd_mobilenet_v1_coco.config \  --trained_checkpoint_prefix training/model.ckpt-31012 \  --output_directory person_vehicle_inference_graph 

  trained_checkpoint_prefix training/model.ckpt-31012 这个checkpoint(.ckpt-后面的数字)可以在training文件夹下找到你自己训练的模型的情况,填上对应的数字(如果有多个,选最大的)。
  output_directory tv_vehicle_inference_graph 改成自己的名字

  运行完后,可以在person_vehicle_inference_graph (这是我的名字)文件夹下发现若干文件,有saved_model、checkpoint、frozen_inference_graph.pb等。 .pb结尾的就是最重要的frozen model了,还记得第一大部分中frozen model吗?没错,就是我们在后面要用到的部分

【测试模型】

  1、打开jupyter notebook,先复制object detection API自带的object_detection_tutorial.ipynb代码;

  2、将模型修改为刚刚导出的模型地址,以及pbtxt文件位置;

 

  3、设置测试图片路径

  4、运行

源码获取方式,关注公总号RaoRao1994,查看往期精彩-所有文章,,即可获取资源下载链接

更多资源获取,请关注公总号RaoRao1994

 

posted @ 2018-04-16 11:17  扰扰  阅读(8011)  评论(3编辑  收藏  举报