Java 作业题1

 

 

 

 

1. 斐波那契

package Test;
import java.util.Scanner;
//import java.util.*;


public class Main {
    public static int f(int a)
    {
        if(a<0)
            return -1;
        if(a == 0)
        {
            return 0;
        }
        if(a== 1 || a== 2)
            return 1;
        else
            return f(a-1)+f(a-2);
        
    }
    
        public static void main(String[] args) {
     
        Scanner inp = new Scanner(System.in);
        int n = inp.nextInt();
        System.out.println( f(n));
        }
    }

2. 闭区间随机数

package Test;
import java.util.Scanner;
//import java.util.*;


public class Main {

    
        public static void main(String[] args) {
     
        Scanner inp = new Scanner(System.in);
        int a = inp.nextInt();
        int b = inp.nextInt();
        int temp=a+(int)(Math.random()*(b+1-a)); 
        System.out.println(temp);
        
        }
    }

3.二项分布

概率公式:

P(ξ=K)= C(n,k) * p^k * (1-p)^(n-k)

C(n, k) = (n-k) !/(k! * (n-k)!),记作ξ~B(n,p),期望:Eξ=np,方差:Dξ=npq,其中q=1-p

根据递推式:C(n,k)=C(n-1,k)+C(n-1,k-1) 可写出递归形式

package Test;
import java.util.Scanner;
//import java.util.*;


public class Main {
        static int Cot = 0;
        public static double binomial(int N, int k, double p) { 
        Cot++; 
        if (N == 0 && k == 0) { 
          return 1.0; 
        } 
        if (N < 0 || k < 0) { 
          return 0.0; 
        } 
        return (1.0 - p) * binomial(N - 1, k, p) + p * binomial(N - 1, k - 1, p); 
      }
    
        public static void main(String[] args) {
     
        //Scanner inp = new Scanner(System.in);
        System.out.println(binomial(30,15,0.25)+ "\t"+ Cot);
            
            
        //System.out.println(temp);
        
        }
    }

 

好兄弟 Cot 已经爆了 这个是用来记录调用次数的

n 才30吧 就不行了...

 

回溯剪枝:

 

package Test;
import java.util.Scanner;
//import java.util.*;


public class Main {
        static long Cot = 0;
        private static double[][] M; 
            
        private static double binomial(int N, int k, double p) { 
        Cot++; 
        if (N == 0 && k == 0) { 
          return 1.0; 
            } 
        if (N < 0 || k < 0) { 
              return 0.0; 
            } 
        if (M[N][k] == -1) { 
              M[N][k] = (1.0 - p) * binomial(N - 1, k, p) + p * binomial(N - 1, k - 1, p); 
            } 
            return M[N][k]; 
        } 
        public static double Binomial(int N, int k, double p) { 
          M = new double[N + 1][k + 1]; 
          for (int i = 0; i <= N; i++) { 
          for (int j = 0; j <= k; j++) { 
             M[i][j] = -1; 
           } 
           } 
            return binomial(N, k, p); 
          }
    
        public static void main(String[] args) {
     
        System.out.println(Binomial(20,5,0.1)+ "\t"+ Cot);
            
            

        }
    }

 

行!

 

 非递归 (这个才是真的快)

    package Test;
    import java.util.Scanner;
    //import java.util.*;
    
    
    public class Main {
        //计算组合数 
        public static double combination(double N, double k) 
        { 
          double min = k; 
          double max = N-k; 
          double t;
          
          double NN=1; 
          double kk=1; 
            
          if(min>max){ 
            t=min; 
            min = max; 
            max=t; 
          } 
            
          while(N>max){//分母中较大的那部分阶乘约分不用计算 
            NN=NN*N; 
            N--; 
          } 
            
          while(min>0){//计算较小那部分的阶乘 
            kk=kk*min; 
            min--; 
          } 
            
          return NN/kk; 
        } 
          
        //计算二项分布值 
        public static double binomial(int N,int k,double p) 
        { 
          double a=1; 
          double b=1; 
            
          double c =combination(N,k); 
            
          while((N-k)>0){ //计算(1-p)的(N-k)次方     
            a=a*(1-p); 
            N--; 
          } 
            
          while(k>0){ //计算p的k次方   
            b=b*p; 
            k--; 
          } 
            
          return c*a*b; 
        }
        
            public static void main(String[] args) {
         
            System.out.println(binomial(20,5,0.1));
                
            }
        }
    
    

 

posted @ 2020-12-16 10:30  然终酒肆  阅读(84)  评论(0编辑  收藏  举报