Python机器学习--降维
-
主成分分析(PCA)
-
测试
# -*- coding: utf-8 -*- """ Created on Thu Aug 31 14:21:51 2017 @author: Administrator """ import matplotlib.pyplot as plt from sklearn.decomposition import PCA from sklearn.datasets import load_iris data = load_iris() y = data.target X = data.data pca = PCA(n_components=2) reduced_X = pca.fit_transform(X) red_x, red_y = [], [] blue_x, blue_y = [], [] green_x, green_y = [], [] for i in range(len(reduced_X)): if y[i] == 0: red_x.append(reduced_X[i][0]) red_y.append(reduced_X[i][1]) elif y[i] == 1: blue_x.append(reduced_X[i][0]) blue_y.append(reduced_X[i][1]) else: green_x.append(reduced_X[i][0]) green_y.append(reduced_X[i][1]) plt.scatter(red_x, red_y, c='r', marker='x') plt.scatter(blue_x, blue_y, c='b', marker='D') plt.scatter(green_x, green_y, c='g', marker='.') plt.show()
-
非负矩阵分解(NMF)
-
测试
# -*- coding: utf-8 -*- """ Created on Thu Aug 31 14:24:26 2017 @author: Administrator """ from numpy.random import RandomState import matplotlib.pyplot as plt from sklearn.datasets import fetch_olivetti_faces from sklearn import decomposition n_row, n_col = 2, 3 n_components = n_row * n_col image_shape = (64, 64) ############################################################################### # Load faces data dataset = fetch_olivetti_faces(shuffle=True, random_state=RandomState(0)) faces = dataset.data ############################################################################### def plot_gallery(title, images, n_col=n_col, n_row=n_row): plt.figure(figsize=(2. * n_col, 2.26 * n_row)) plt.suptitle(title, size=16) for i, comp in enumerate(images): plt.subplot(n_row, n_col, i + 1) vmax = max(comp.max(), -comp.min()) plt.imshow(comp.reshape(image_shape), cmap=plt.cm.gray, interpolation='nearest', vmin=-vmax, vmax=vmax) plt.xticks(()) plt.yticks(()) plt.subplots_adjust(0.01, 0.05, 0.99, 0.94, 0.04, 0.) plot_gallery("First centered Olivetti faces", faces[:n_components]) ############################################################################### estimators = [ ('Eigenfaces - PCA using randomized SVD', decomposition.PCA(n_components=6,whiten=True)), ('Non-negative components - NMF', decomposition.NMF(n_components=6, init='nndsvda', tol=5e-3)) # 设置k=6 ] ############################################################################### for name, estimator in estimators: print("Extracting the top %d %s..." % (n_components, name)) print(faces.shape) estimator.fit(faces) components_ = estimator.components_ plot_gallery(name, components_[:n_components]) plt.show()
-
结果
Extracting the top 6 Eigenfaces - PCA using randomized SVD...
(400, 4096)
Extracting the top 6 Non-negative components - NMF...
(400, 4096)

C/C++基本语法学习
STL
C++ primer