Fork me on GitHub

分组卷积和深度可分离卷积实现

- 这里暂时看各种框架api实现,相比于普通卷积(卷积操作详解)的高效实现,分组卷积怎么高效实现待研究!

Normal Convolutional Layer

- A normal convolutional layer. Yellow blocks represent learned parameters, gray blocks represent feature maps/input images (working memory).

Convolutional Layer with Filter Groups

- A convolutional layer with 2 filter groups. Note that each of the filters in the grouped convolutional layer is now exactly half the depth, i.e. half the parameters and half the compute as the original filter.

tensorflow实现:

depthwise_conv2d_native:
for k in 0..in_channels-1
  for q in 0..channel_multiplier-1
    output[b, i, j, k * channel_multiplier + q] =
      sum_{di, dj} input[b, strides[1] * i + di, strides[2] * j + dj, k] *
                        filter[di, dj, k, q]

depthwise_conv2d:
output[b, i, j, k * channel_multiplier + q] = sum_{di, dj}
     filter[di, dj, k, q] * input[b, strides[1] * i + rate[0] * di,
                                     strides[2] * j + rate[1] * dj, k]

conv2d:
output[b, i, j, k] =
    sum_{di, dj, q} input[b, strides[1] * i + di, strides[2] * j + dj, q] *
                    filter[di, dj, q, k]

- 普通卷积和深度可分离卷积实现,使用depthwise_conv2d_native原始的貌似可以辅助实现分组卷积,速度慢;depthwise_conv2d使用矩阵实现;

 

pytorch实现:

- torch.nn.Conv2d(in_channelsout_channelskernel_sizestride=1padding=0dilation=1groups=1bias=Truepadding_mode='zeros')

- groups controls the connections between inputs and outputs. in_channels and out_channels must both be divisible by groups. For example,

  • At groups=1, all inputs are convolved to all outputs.

  • At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated.

  • At groups= in_channels, each input channel is convolved with its own set of filters, of size: \left\lfloor\frac{out\_channels}{in\_channels}\right\rfloorin_channelsout_channels⌋.

 

caffe实现:

  layer {
    name: "conv1"
    type: "Convolution"
    bottom: "data"
    top: "conv1"
    # learning rate and decay multipliers for the filters
    param { lr_mult: 1 decay_mult: 1 }
    # learning rate and decay multipliers for the biases
    param { lr_mult: 2 decay_mult: 0 }
    convolution_param {
      num_output: 96     # learn 96 filters
      kernel_size: 11    # each filter is 11x11
      stride: 4          # step 4 pixels between each filter application
      weight_filler {
        type: "gaussian" # initialize the filters from a Gaussian
        std: 0.01        # distribution with stdev 0.01 (default mean: 0)
      }
      bias_filler {
        type: "constant" # initialize the biases to zero (0)
        value: 0
      }
    }
  }

Optional

  • bias_term [default true]: specifies whether to learn and apply a set of additive biases to the filter outputs
  • pad (or pad_h and pad_w) [default 0]: specifies the number of pixels to (implicitly) add to each side of the input
  • stride (or stride_h and stride_w) [default 1]: specifies the intervals at which to apply the filters to the input
  • group (g) [default 1]: If g > 1, we restrict the connectivity of each filter to a subset of the input. Specifically, the input and output channels are separated into g groups, and the iith output group channels will be only connected to the iith input group channels.

 

posted @ 2019-05-14 16:33  ranjiewen  阅读(2791)  评论(0编辑  收藏  举报