uva 10600 次小生成树
Problem A
ACM contest and Blackout
In order to prepare the “The First National ACM School Contest”(in 20??) the major of the city decided to provide all the schools with a reliable source of power. (The major is really afraid of blackoutsJ). So, in order to do that, power station “Future” and one school (doesn’t matter which one) must be connected; in addition, some schools must be connected as well.
You may assume that a school has a reliable source of power if it’s connected directly to “Future”, or to any other school that has a reliable source of power. You are given the cost of connection between some schools. The major has decided to pick out two the cheapest connection plans – the cost of the connection is equal to the sum of the connections between the schools. Your task is to help the major – find the cost of the two cheapest connection plans.
Input
The Input starts with the number of test cases, T (1£T£15) on a line. Then T test cases follow. The first line of every test case contains two numbers, which are separated by a space, N (3£N£100) the number of schools in the city, and M the number of possible connections among them. Next M lines contain three numbers Ai, Bi, Ci , where Ci is the cost of the connection (1£Ci£300) between schools Ai and Bi. The schools are numbered with integers in the range 1 to N.
Output
For every test case print only one line of output. This line should contain two numbers separated by a single space - the cost of two the cheapest connection plans. Let S1 be the cheapest cost and S2 the next cheapest cost. It’s important, that S1=S2 if and only if there are two cheapest plans, otherwise S1£S2. You can assume that it is always possible to find the costs S1 and S2..
Sample Input |
Sample Output |
2 5 8 1 3 75 3 4 51 2 4 19 3 2 95 2 5 42 5 4 31 1 2 9 3 5 66 9 14 1 2 4 1 8 8 2 8 11 3 2 8 8 9 7 8 7 1 7 9 6 9 3 2 3 4 7 3 6 4 7 6 2 4 6 14 4 5 9 5 6 10 |
110 121 37 37 |
Problem source: Ukrainian National Olympiad in Informatics 2001
Problem author: Shamil Yagiyayev
Problem submitter: Dmytro Chernysh
Problem solution: Shamil Yagiyayev, Dmytro Chernysh, K M Hasan
求两棵最小的生成树权值,第一个显然mst,第二个用n^2 dfs求出任意两点间最大边权,然后枚举没有在mst中的边求次小mst即可
1A代码:
#include<iostream> #include<cstdio> #include<cstring> #include<string> #include<cmath> #include<vector> #include<cstdlib> #include<algorithm> #include<queue> #include<map> using namespace std; #define LL long long #define ULL unsigned long long #define UINT unsigned int #define MAX_INT 0x7fffffff #define cint const int #define MAX(X,Y) ((X) > (Y) ? (X) : (Y)) #define MIN(X,Y) ((X) < (Y) ? (X) : (Y)) #define MAXN 111 #define MAXM 11111 #define INF 100000000 struct edge{ int u, v, d; bool operator < (const edge &rhs)const{ return d < rhs.d; } }e[MAXM]; vector<int> g[MAXN]; int n, m; int p[MAXN]; int finds(int x){ if(p[x]==-1) return x; else return (p[x]=finds(p[x])); } bool vis[MAXM]; int w[MAXN][MAXN]; int mst(){ fill_n(p+1, n, -1); fill_n(vis, m, false); for(int i=1; i<=n; i++) g[i].clear(); sort(e, e+m); int ans=0; for(int i=0, j=0; i<m; i++){ int x = e[i].u, y = e[i].v, d = e[i].d; int fx = finds(x), fy = finds(y); if(fx!=fy){ p[fx]=fy; ans+=d; vis[i]=true; g[x].push_back(y); w[x][y]=w[y][x]=d; g[y].push_back(x); if(++j==n-1) break; } } return ans; } int maxcst[MAXN][MAXN]; vector<int> pre; //bool viv[MAXN]; void dfs(int u, int fa){ // viv[u]=true; for(int i=0; i<pre.size(); i++){ int v = pre[i], d = w[fa][u]; maxcst[u][v]=maxcst[v][u]= MAX(d, maxcst[fa][v]); } pre.push_back(u); for(int i=0; i<g[u].size(); i++) if(fa!=g[u][i]) dfs(g[u][i], u); } int main(){ // freopen("C:\\Users\\Administrator\\Desktop\\in.txt","r",stdin); int T; scanf(" %d", &T); while(T--){ int i; scanf(" %d %d", &n, &m); for(i=0; i<m; i++){ int u, v, w; scanf(" %d %d %d", &u, &v, &w); if(u!=v) e[i]=(edge){u, v, w}; // - - } int fir = mst(); for(i=1; i<=n; i++) fill_n(maxcst[i]+1, n, -1); // fill_n(viv+1, n, false); pre.clear(); // printf("%d\n", fir); dfs(1, -1); int sec = INF; for(i=0; i<m; i++) if(!vis[i]){ int u = e[i].u, v = e[i].v, d = e[i].d; sec=MIN(sec, fir-maxcst[u][v]+d); // cout<<"^^^^^^^^^^^^^^^^^^^^^^"<<endl; // cout<<(fir-maxcst[u][v]+d)<<endl; // cout<<maxcst[u][v]<<endl; //// cout<<e[i].u<<' '<<e[i].v<<' '<<e[i].d<<endl; // cout<<"&&&&&&&&&&&&&&&&&&&&&&&"<<endl; } printf("%d %d\n", fir, sec); } return 0; }