Solution -「CF 1366E2」Chiori and Doll Picking (hard version)
\(\mathscr{Description}\)
Link.
给定 \(\{a_n\}\), 值域 \([0,2^m)\). 对于每个 \(i\in[0,m]\), 求有多少个 \(\{a_n\}\) 的子序列异或和恰好含有 \(i\) 个 bit. 答案模大素数.
\(n\le2\times10^5\), \(m\le53\).
\(\mathscr{Solution}\)
第一个 motivation 应当来自这个诡异的 \(m\le53\), 通过一定的猜测, 我们发现只有 \(\mathcal O(2^{m/2})\) 这种复杂度勉强说得过去. 由此, 我们可以尝试在 \(m\) 上进行复杂度平衡.
取 \(\{a_n\}\) 的一组基底 \(\mathscr A\). 我们有一个平凡的 \(\mathcal O(2^{\rank(\mathscr A)})\) 的算法: 枚举 \(v\in\span(\mathscr A)\), \(\{a_n\}\) 的线性组合出 \(v\) 的方案数恒为 \(2^{n-|\mathscr A|}\), 将其贡献向 \(|v|\) 处的答案即可. 接下来只需要找到一个 \(\mathcal O(2^{m-\rank(\mathscr A)})\) 的算法就大功告成了.
设 \(A(z)=\sum_{v\in\span(\mathscr A)}z^v\), \(\hat A\) 为其 FWT 的输出向量. 由于
其中叉乘为异或卷积, 下同. 所以
那么
进而得到
回过头来, 由于
所以当且仅当不存在 \(v\in\span(\mathscr A)\) 使得 \(2\nmid|v\cap k|\) 时, \(\hat A^{(k)}=2^{\rank(\mathscr A)}\), 否则 \(\hat A^{(k)}=0\). 而又显然, 这个命题中的 \(v\in\span(\mathscr A)\) 可以等价替换为 \(v\in\mathscr A\). 这时有一个 key observation: \(\{k\mid \hat A^{(k)}=2^{\rank(\mathscr A)}\}\) 是一个线性空间 (证明是容易的).
尝试构造这个空间的一个基底 \(\mathscr B\). 将 \(\mathscr A\) 扩充到 \(m\times m\) 并消元为上三角矩阵且主对角线 \(1\) 的上方被消为 \(0\), 则此时 \(\mathscr B=\mathscr A^T+I\) (即转置后主对角线取反). 没想到 motivation, 但证明同样容易. 顺带, 我们发现 \(\rank(\mathscr B)=m-\rank(\mathscr A)\) (但 \(\mathscr A,\mathscr B\) 并不一定正交, 不知道为什么很多题解这样认为), 所以差不多可以利用 \(\mathscr B\) 来求答案了.
同样设出 \(B(z)\), 根据 \(\mathscr B\) 的来源:
令 \(P(z)=\sum_{v\in\span(\mathscr A)}z^{|v|}\), \(Q(z)\) 同理. 欲求
其中 \([z^t]C_k(z)=[|t|=k]\). 对正逆变换提取 \(z^0\) 都不复杂, 我们利用 \(B(z)\) 手撕这个式子:
\(Q(z)\) 可以用最初的算法 \(\mathcal O(2^{\rank(\mathscr B)})\) 算出来, 平衡复杂度则得到 \(\mathcal O(2^{m/2})\) 的算法.
\(\mathscr{Code}\)
/*+Rainybunny+*/
#include <bits/stdc++.h>
#define rep(i, l, r) for (int i = l, rep##i = r; i <= rep##i; ++i)
#define per(i, r, l) for (int i = r, per##i = l; i >= per##i; --i)
typedef long long LL;
inline char fgc() {
static char buf[1 << 17], *p = buf, *q = buf;
return p == q && (q = buf + fread(p = buf, 1, 1 << 17, stdin), p == q) ?
EOF : *p++;
}
template <typename Tp = int>
inline Tp rint() {
Tp x = 0, s = fgc(), f = 1;
for (; s < '0' || '9' < s; s = fgc()) f = s == '-' ? -f : f;
for (; '0' <= s && s <= '9'; s = fgc()) x = x * 10 + (s ^ '0');
return x * f;
}
template <typename Tp>
inline void wint(Tp x) {
if (x < 0) putchar('-'), x = -x;
if (9 < x) wint(x / 10);
putchar(x % 10 ^ '0');
}
const int MAXM = 53, MOD = 998244353, INV2 = MOD + 1 >> 1;
int n, m, bino[MAXM + 5][MAXM + 5];
inline int mul(const int u, const int v) { return 1ll * u * v % MOD; }
inline void subeq(int& u, const int v) { (u -= v) < 0 && (u += MOD); }
inline int sub(int u, const int v) { return (u -= v) < 0 ? u + MOD : u; }
inline void addeq(int& u, const int v) { (u += v) >= MOD && (u -= MOD); }
inline int add(int u, const int v) { return (u += v) < MOD ? u : u - MOD; }
inline int mpow(int u, int v) {
int ret = 1;
for (; v; u = mul(u, u), v >>= 1) ret = mul(ret, v & 1 ? u : 1);
return ret;
}
struct LinearBase {
int siz;
LL bas[MAXM];
inline void insert(LL x) {
rep (i, 0, m - 1) if (x >> i & 1) {
if (!bas[i]) return bas[i] = x, ++siz, void();
x ^= bas[i];
}
}
inline std::vector<int> spanCount() const {
std::vector<int> ret(m + 1), seq; seq.reserve(siz);
rep (i, 0, m - 1) if (bas[i]) seq.push_back(i);
std::function<void(int, LL)> enumer = [&](const int id, const LL v) {
if (id == siz) return void(++ret[__builtin_popcountll(v)]);
enumer(id + 1, v), enumer(id + 1, v ^ bas[seq[id]]);
};
enumer(0, 0);
return ret;
}
inline void standardize() {
rep (i, 0, m - 1) if (bas[i]) {
rep (j, 0, i - 1) if (bas[j] >> i & 1) {
bas[j] ^= bas[i];
}
}
}
} A, B;
inline void solveA() {
int pwr = mpow(2, n - A.siz);
auto&& P = A.spanCount();
rep (i, 0, m) wint(mul(P[i], pwr)), putchar("\n "[i < m]);
}
inline void solveB() {
bino[0][0] = 1;
rep (i, 1, m) {
bino[i][0] = 1;
rep (j, 1, i) bino[i][j] = add(bino[i - 1][j - 1], bino[i - 1][j]);
}
A.standardize();
rep (i, 0, m - 1) if (!A.bas[i]) {
LL v = 1ll << i;
rep (j, 0, i - 1) v |= (A.bas[j] >> i & 1) << j;
B.insert(v);
}
int pwr = n < m ? mpow(INV2, m - n) : mpow(2, n - m);
auto&& Q = B.spanCount();
rep (i, 0, m) {
int ans = 0;
rep (j, 0, m) if (Q[j]) {
int coe = 0;
rep (k, 0, std::min(i, j)) {
(k & 1 ? subeq : addeq)(coe,
mul(bino[j][k], bino[m - j][i - k]));
}
addeq(ans, mul(coe, Q[j]));
}
wint(mul(pwr, ans)), putchar("\n "[i < m]);
}
}
int main() {
n = rint(), m = rint();
rep (i, 1, n) A.insert(rint<LL>());
if (A.siz <= m + 1 >> 1) solveA();
else solveB();
return 0;
}