Note -「Lagrange 反演」记笔习学
也许施工完成啦?
对于常数项为 \(0\),一次项非 \(0\) 的多项式 \(F,G\),定义复合运算 \(\circ\),满足
对于域 \(\mathbb F\),令 \(\mathcal S\) 为 \(\mathbb F[[x]]\) 中所有满足上述条件的多项式构成的集合。对于任意多项式 \(F\in \mathcal S\),我们存在一种暴力构造方法唯一确定 \(G\) 使得 \(F\circ G=x\),因而 \(\circ\) 在 \(\mathcal S\) 上可逆。继而不难说明,\((\mathcal S,\circ)\) 构成群,即多项式复合群。
注意在群意义下,满足 \(F\circ G=x\) 的 \(F,G\) 应当互为逆元,因而有一个小结论
此时,也称 \(F,G\) 互为复合逆。
Lagrange 反演指出,对于 \(F,G\in\mathcal S\),满足 \(F\circ G=x\) 时,有
其中涉及比较诡异的 "\([x^{-1}]\)"。事实上,这些运算是在分式域下进行的。在分式域 \(\mathbb F(x)\) 下,任意非零整式 \(F(x)\) 存在乘法逆。因为我们总能找到 \(\mathbb F[[x]]\) 下的可逆整式 \(G(x)=F(x)/x^k\),那么此时 \(F^{-1}(x)=x^{-k}G^{-1}(x)\)。
接下来尝试证明反演公式。先证明引理:对于 \(k\in\mathbb Z,F\in\mathcal S\),有
- 当 \(k\neq-1\),\(F'(x)F^k(x)=\left(\frac{F^{k+1}(x)}{k+1}\right)'\)。根据上文科普,这一结果为整式,因而 \([x^{-1}]=0\)。
- 当 \(k=-1\),\([x^{-1}]F'(x)F^{-1}(x)=[x^0]F'(x)(F(x)/x)^{-1}\),根据 \(F\in\mathcal S\) 这一性质可知 \(F(x)/x\) 在整式下可逆。观察发现 \([x^0]F'(x)=[x^0](F(x)/x)=[x^1]F(x)\),因而 \([x^{-1}]F'(x)F^{-1}(x)=1\)。
接下来进行原命题证明。已知
两边求导,
靠向证明目标,两边(在分式域下)除以 \(G^n(x)\) 并取 \([x^{-1}]\),
对左侧运用引理,当且仅当 \(i=n\) 时 \([x^{-1}]G^{i-1-n}G'(x)=1\neq0\),因而
作为整式爱好者,可以将这一结论变为
其中 \(F(x)/x\) 整式下可逆,规避了分式域。
扩展 Lagrange 反演:对于满足 \(F\circ G=x\) 的 \(F,G\in\mathcal S\) 以及任意多项式 \(H(x)\),有
证明依葫芦画瓢叭,首先有
展开求导,
除以 \(F^n(x)\) 并取 \([x^{-1}]\),顺带用引理,
当然也有好看 ver:
(好像啥也没多干啊。)
喜闻乐见的例题时间。
一定要看样例解释捏。(
令 \(G(x)\) 为答案的 GF,\(F(x)=\sum_ix^{d_i}\),显然
令 \(H(x)=x-F(x)\),Lagrange 反演得
正巧 \([x^0](H(x)/x)=1\),规规整整多项式快速幂。复杂度 \(\mathcal O(n\log n)\)。
由于状态间的转移概率很方便刻画,但是结束状态反而难以表达,所以可以想到把期望轮数转化成:非法状态出现概率 \(\times\) 此时进行一次有效转移的期望轮数。后者仅与已有卡牌数量有关,故我们只需要求出前者,即确定已有卡牌数量情况下的非法状态数量。
不同的连续段的计数是独立的。单独考虑长度为 \(n\) 的一个连续段,在其上构造非法状态的方法可描述为:任意获得连续的 \(t\in[0,k)\) 张卡牌,然后强制跳过一张卡牌。用对象 \(x\) 描述考虑过的卡牌数量,对象 \(y\) 表示跳过的卡牌数量。那么对于“连续获得卡牌”,其 GF 为
继而,上述构造方法所描述情景的 GF 为
构造完成后,必然考虑过 \(n+1\) 张卡牌。(第 \(n\) 张之后又“强制跳过”一张。)所以,在长度为 \(n\) 的连续段上不选 \(m\) 张卡牌,使得连续段不合法的方案数为
但 \(F\) 并不好求,我们需要继续推导。
注意到 \((1-xy)^{-1}\) 对应的序列是平凡的,我们令 \(H(x,y)=(1-xy)^{-1}\),那么 \(F(x,y)=H(P(x),y)\)。尝试对这一二元复合函数施加扩展 Lagrange 反演。令 \(Q(x)\) 为 \(P(x)\) 的复合逆,那么
求导出来一个 \((1-xy)^{-2}\),不过我们只取 \([x^{n+1}]\) 这一项,所以也很容易提取对应的 \(y\) 的系数。接下来就只需要求出 \((Q(x)/x)^{-n-1}\)。
根据假设,
直接牛迭得到:
虽然一看常数就巨大但起码能求。
最后,设第 \(i\) 个连续段关于 \(y\) 的 GF 为 \(R_i(y)=[x^{n_i+1}]F_i(x,y)\),则答案为
其中 \(R(y)/y\) 亦是处理最后一个虚假的“强制跳过”。瓶颈在于计算最后一项多项式卷积,复杂度 \(\mathcal O(m\log^2m)\),但我猜最慢的地方还是求 \(Q(x)\)。