Live2D

Solution -「ABC 215H」Cabbage Master

\(\mathcal{Description}\)

  Link.

  有 \(n\) 种颜色的,第 \(i\) 种有 \(a_i\) 个,任意两球互不相同。还有 \(m\) 个盒子,每个盒子可以被放入某些颜色的小球,且第 \(i\) 个盒子要求放入总数不少于 \(b_i\)。你要拿走尽量少的球,使得要求无法被满足,并求出此时拿球方案数模 \(998244353\) 的值。

  \(n\le20\)\(m\le10^4\)

\(\mathcal{Solution}\)

  如果保持清醒地做这道题还是比较简单的。

  首先用 Hall 定理转化合法条件,记 \(A=\{a_n\}\)\(B=\{b_m\}\)\(\operatorname{adj}(S\subseteq B)\) 表示 \(S\) 内的 \(b\) 所邻接的 \(a\) 的并,则合法条件为

\[\forall S\subseteq B,~\sum_{b\in S}b\le\sum_{a\in\operatorname{adj}(S)}a \]

那么可以得知非法条件。固定 \(\operatorname{adj}(S)\),显然 \(b\) 能多选就多选,最终能得到最小取球数量为

\[c=\max\left\{0,\min_{\operatorname{adj}(S)}\left\{\sum_{a\in\operatorname{adj}(S)}a-\sum_{\operatorname{adj}(\{b\})\subseteq\operatorname{adj}(S)}b+1\right\}\right\}. \]

  令集族 \(\mathcal S=\arg \min_{\operatorname{adj}(S)}\left\{\sum_{a\in\operatorname{adj}(S)}a-\sum_{\operatorname{adj}(\{b\})\subseteq\operatorname{adj}(S)}b+1\right\}\),也能避免算重地求出方案数为:

\[\sum_{T\subseteq A}[\exist S\in \mathcal S,~T\subseteq S]f(T,c). \]

其中 \(f(T,c)\) 表示在集合 \(T\) 内的 \(a\) 中一共选走 \(c\) 个,且每个 \(a\) 至少被选走一个的方案数,可以容斥计算。具体实现上,用几次 FWT 即可。复杂度 \(\mathcal O(nm+2^nn)\)

\(\mathcal{Code}\)

/*~Rainybunny~*/

#include <cstdio>

#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i )

inline void chkmin( int& a, const int b ) { b < a && ( a = b ); }

const int MAXN = 20, MAXM = 1e4, MAXV = 2e6, MOD = 998244353;
int n, m, a[MAXN + 5], b[MAXM + 5], adj[MAXM + 5], sum[1 << MAXN];
int fac[MAXV + 5], ifac[MAXV + 5], tot[1 << MAXN];
int cvr[1 << MAXN], chs[1 << MAXN];

inline void subeq( int& a, const int b ) { ( a -= b ) < 0 && ( a += MOD ); }
inline int sub( int a, const int b ) { return ( a -= b ) < 0 ? a + MOD : a; }
inline int mul( const long long a, const int b ) { return int( a * b % MOD ); }
inline int add( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
inline void addeq( int& a, const int b ) { ( a += b ) >= MOD && ( a -= MOD ); }
inline int mpow( int a, int b ) {
    int ret = 1;
    for ( ; b; a = mul( a, a ), b >>= 1 ) ret = mul( ret, b & 1 ? a : 1 );
    return ret;
}

inline void init( const int s ) {
    fac[0] = 1;
    rep ( i, 1, s ) fac[i] = mul( i, fac[i - 1] );
    ifac[s] = mpow( fac[s], MOD - 2 );
    per ( i, s - 1, 0 ) ifac[i] = mul( ifac[i + 1], i + 1 );
}

inline int comb( const int a, const int b ) {
    return a < b ? 0 : mul( fac[a], mul( ifac[b], ifac[a - b] ) );
}

inline void fwtAND( const int len, int* u, const auto& adf ) {
    for ( int stp = 1; stp < len; stp <<= 1 ) {
        for ( int i = 0; i < len; i += stp << 1 ) {
            rep ( j, i, i + stp - 1 ) {
                adf( u[j], u[j + stp] );
            }
        }
    }
}

inline void fwtOR( const int len, int* u, const auto& adf ) {
    for ( int stp = 1; stp < len; stp <<= 1 ) {
        for ( int i = 0; i < len; i += stp << 1 ) {
            rep ( j, i, i + stp - 1 ) {
                adf( u[j + stp], u[j] );
            }
        }
    }
}

int main() {
    scanf( "%d %d", &n, &m );
    rep ( i, 0, n - 1 ) scanf( "%d", &a[i] );
    rep ( i, 0, m - 1 ) scanf( "%d", &b[i] );
    rep ( i, 0, n - 1 ) {
        rep ( j, 0, m - 1 ) {
            int t; scanf( "%d", &t );
            adj[j] |= t << i;
        }
    }
    rep ( i, 0, m - 1 ) sum[adj[i]] += b[i];
    fwtOR( 1 << n, sum, []( int& u, const int v ) { u += v; } );

    int tak = 1e9;
    rep ( S, 1, ( 1 << n ) - 1 ) {
        rep ( i, 0, n - 1 ) if ( S >> i & 1 ) tot[S] += a[i];
        if ( sum[S] ) chkmin( tak, tot[S] + 1 - sum[S] );
    }
    if ( tak <= 0 ) return puts( "0 1" ), 0;
    printf( "%d ", tak );

    int way = 0; init( tot[( 1 << n ) - 1] );
    rep ( S, 1, ( 1 << n ) - 1 ) {
        cvr[S] = tot[S] + 1 - sum[S] == tak;
        chs[S] = comb( tot[S], tak );
        if ( __builtin_popcount( S ) & 1 ) chs[S] = sub( 0, chs[S] );
    }
    fwtAND( 1 << n, cvr, []( int& u, const int v ) { u += v; } );
    fwtOR( 1 << n, chs, addeq );
    rep ( S, 1, ( 1 << n ) - 1 ) if ( cvr[S] ) {
        ( __builtin_popcount( S ) & 1 ? subeq : addeq )( way, chs[S] );
    }
    printf( "%d\n", way );
    return 0;
}

\(\mathcal{Details}\)

  某个问题无法找到解决方法时,尤其是在速度相关的比赛时,一定要冷静下来,形式地描述“我想要求什么东西”,而不是对着代码修修补补。

posted @ 2021-08-23 13:09  Rainybunny  阅读(88)  评论(1编辑  收藏  举报