Live2D

Solution -「Gym 102759G」LCS 8

\(\mathcal{Description}\)

  Link.

  给定 \(m\),和长度为 \(n\),字符集为大写字母的字符串 \(s\),求字符集相同且等长的字符串 \(t\) 的数量,使得 \(s,t\) 的 LCS 长度不小于 \(n-m\)。答案模 \((10^9+7)\)

  \(n\le5\times10^4\)\(m\le3\)

\(\mathcal{Solution}\)

  有个傻瓜怕不是忘了 DP of DP 这种东西。

  LCS 的 DP 信息是很方便压缩储存的,在决策 \(t_{i+1}\) 时,我们希望知道 \(g_{i,\max\{0,i-m\}..\min\{n,i+m\}}\)\(g_{i,j}\)\(s[:i]\)\(t[:j]\) 的 LCS),记录第一个位置和其对应下标的差值(不超过 \(m\))以及后面位置的差分(\(01\) 状态),可以得到一个 \((m+1)2^{2m}\) 的压缩,转移枚举在这 \(\mathcal O(m)\) 个内的字符,整体转移不在的字符,最劣复杂度为 \(\mathcal O(nm^22^{2m})\),不过明显跑不满。

\(\mathcal{Code}\)

  写得很丑就试了 qwq。

/*~Rainybunny~*/

#include <cstdio>
#include <cassert>
#include <cstring>

#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i )

const int MAXN = 5e4, MAXM = 3, MOD = 1e9 + 7;
int n, m, f[2][MAXM + 1][1 << 2 * MAXM];
char str[MAXN + 5];

/*
f(i,i-m), f(i,j-m+1), ..., f(i,i+m)
    x   ,    +[0]   , +[...], +[2m-1]
*/

inline int imin( const int a, const int b ) { return a < b ? a : b; }
inline int imax( const int a, const int b ) { return a < b ? b : a; }
inline int mul( const int a, const int b ) { return int( 1ll * a * b % MOD ); }
inline void addeq( int& a, const int b ) { ( a += b ) >= MOD && ( a -= MOD ); }

int main() {
    scanf( "%s %d", str + 1, &m ), n = int( strlen( str + 1 ) );
    str[0] = -1; rep ( i, 1, n ) str[i] -= 'A';

    f[0][0][0] = 1;
    for ( int i = 0, sta = 0; i < n; ++i, sta ^= 1 ) {
        rep ( j, 0, m ) rep ( S, 0, ( 1 << 2 * m ) - 1 ) {
            int& cur = f[sta][j][S];
            if ( !cur ) continue;
            // printf( "f(%d,%d,%d)=%d\n", i, j, S, cur );
            static bool vis[26] = {}; int cnt = 0;
            int tp = imax( i - m, 0 ), sp = imax( i - m + 1, 0 ), u, v;

            rep ( t, sp, imin( i + m + 1, n ) ) if ( t && !vis[str[t]] ) {
                int c = str[t]; vis[c] = true, ++cnt;
                int las[2] = { imax( i - m, 0 ) - j, 0 }, fir = 0, T = 0;
                // f(i,j)=max{f(i-1,j),f(i,j-1),f(i-1,j-1)+1}.
                rep ( k, sp, imin( i + m + 1, n ) ) {
                    u = las[0] + ( S >> ( k - tp - 1 ) & 1 );
                    v = imax( imax( las[1], u ), las[0] + ( str[k] == c ) );
                    if ( k == sp ) {
                        fir = k - v;
                        if ( fir > m ) break;
                    } else T |= ( v > las[1] ) << ( k - sp - 1 );
                    las[0] = u, las[1] = v;
                }
                if ( fir <= m ) addeq( f[!sta][fir][T], cur );
            }
            {
                int las[2] = { imax( i - m, 0 ) - j, 0 }, fir = 0, T = 0;
                rep ( k, sp, imin( i + m + 1, n ) ) {
                    u = las[0] + ( S >> ( k - tp - 1 ) & 1 );
                    v = imax( las[1], u );
                    if ( k == sp ) {
                        fir = k - v;
                        if ( fir > m ) break;
                    } else T |= ( v > las[1] ) << ( k - sp - 1 );
                    las[0] = u, las[1] = v;
                }
                if ( fir <= m ) addeq( f[!sta][fir][T], mul( cur, 26 - cnt ) );
            }

            rep ( t, sp, imin( i + m + 1, n ) ) if ( t ) vis[str[t]] = false;
            cur = 0;
        }
    }

    int ans = 0;
    rep ( i, 0, m ) rep ( S, 0, ( 1 << 2 * m ) - 1 ) {
        // if ( f[n & 1][i][S] )
        //     printf( "f(%d,%d,%d)=%d\n", n, i, S, f[n & 1][i][S] );
        assert( !f[n & 1][i][S] || !( S >> m ) );
        if ( imax( n - m, 0 ) - i + __builtin_popcount( S ) >= n - m ) {
            addeq( ans, f[n & 1][i][S] );
        }
    }
    printf( "%d\n", ans );
    return 0;
}

posted @ 2021-08-16 07:29  Rainybunny  阅读(121)  评论(0编辑  收藏  举报