Live2D

Solution -「多校联训」光影交错

\(\mathcal{Description}\)

  Link.

  一个游戏包含若干次卡牌抽取,每次以 \(p_l\) 的概率得到 \(+1\)\(p_d\) 的概率得到 \(-1\),否则得到 \(0\),操作后以 \(p\) 的概率结束游戏,求每次抽取后,满足 \(+1\) 数量大于 \(-1\) 数量的抽取轮数的期望值。不取模。

  \(0<p\le1\)\(0\le p_l,p_d,p_l+p_d\le 1\)

\(\mathcal{Solution}\)

  我请愿为Tiw 太阳神教的教徒。(

  令 \(p_e=1-p_l-p_r\),表示得到 \(0\) 的概率。我们直接从答案 \(\mathcal A\) 入手:

\[\mathcal{A} = \sum_{l>d\ge 0,e\ge 0} \binom{l+d+e}{l,d,e} p_l^lp_d^dp_e^e (1-p)^{l+d+e-1}, \]

即枚举一个抽取后(不一定结束)的状态。此后,把 \((1-p)\) 的指数分配到其余三个因子上,令

\[\begin{cases} p_e'=p_e(1-p)\\ p_l'=p_l(1-p)\\ p_d'=p_d(1-p) \end{cases}, \]

带入 \(\mathcal{A}\),同时发现 \(e\) 的限制较少,所以单独枚举 \(e\),有

\[\begin{aligned} \mathcal{A} &=\frac{1}{1-p} \sum_{l>d\ge0,e\ge0} \binom{l+d+e}{l,d,e}p_e'^ep_d'^dp_l'^l\\ &= \frac{1}{1-p} \sum_{l\ge d\ge 0} \binom{l+d}{d} p_l'^lp_d'^d \sum_{e\ge 0}\binom{l+d+e}{e}p_e'^e. \end{aligned} \]

  最后的级数形如 \(\sum_{i\ge 0}\binom{i+t}{i}x^i=\frac{1}{(1-x)^t}\),当 \(p_e=1\) 时认为 \(\frac{1}{0^0}=1\),即任意 \(p_e\) 在这个 GF 的收敛域中,可以直接带入。所以

\[\mathcal{A} = \frac{1}{1-p} \sum_{l>d\ge0} \binom{l+d}{d}p_l'^lp_d'^d \frac{1}{(1-p_e')^{l+d+1}}. \]

  按照先前的套路分配指数,再令

\[\begin{cases} p_l''=\frac{p_l'}{1-p_e'}\\ p_d''=\frac{p_d'}{1-p_e'} \end{cases}, \]

代入整理,得到

\[\mathcal{A}=\frac{1}{(1-p)(1-p_e')} \sum_{l>d\ge0} \binom{l+d}{d} p_l''^lp_d''^d. \]

  我们固定 \(l\),挑出此时 \(d\) 的和式来研究,记

\[S_d(l)=\sum_{0\le d<l}\binom{l+d}{d}p_d''^d. \]

错位相减,左右乘 \((1-p_d'')\),对齐求和指标 \(d\) 以化简,最终得到

\[(1-p_d'')S_d(l)=S_d(l-1)+\binom{2(l-1)}{l-1}p_d''^{l-1}-\binom{2l-1}{l-1}p_d''^l. \]

\(a_l=\binom{2(l-1)}{l-1}p_d''^{l-1}-\binom{2l-1}{l-1}p_d''^l\),自然得到

\[S_d(l) = \sum_{i=0}^l \frac{a_i}{(1-p_d'')^{l-i+1}}. \]

  代回 \(\mathcal{A}\),交换求和指标并分配 \((1-p_d'')^{l-i+1}\) 的指数:

\[\begin{aligned} \mathcal{A} &= \frac{1}{(1-p)(1-p_e')} \sum_{l\ge0} p_l''^l \sum_{i=1}^l \frac{a_i}{(1-p_d'')^{l-i+1}} \\ &= \frac{1}{(1-p)(1-p_e')} \sum_{i\ge1} \frac{a_i}{(1-p_d'')^{-i+1}} \sum_{l\ge i} \left(\frac{p_l''}{1-p_d''}\right)^l. \end{aligned} \]

注意到最后的级数是等比数列求和,先考虑它的收敛性:

\[\begin{aligned} 1-p_d''-p_l'' &= 1-\frac{(1-p)p_d+(1-p)p_l}{1-(1-p)p_e} \\ &= \frac{1-(1-p)p_e-(1-p)p_d-(1-p)p_l}{1-(1-p)p_e} \\ &= \frac{p}{1-(1-p)p_e} \\ &>0. \end{aligned} \]

收敛啦。不妨令 \(q=\frac{p_l''}{1-p_d''}\),整理式子:

\[\begin{aligned} \mathcal{A} &= \frac{1}{(1-p)(1-p_e')} \sum_{i\ge1}\frac{a_i}{(1-p_e'')^{-i+1}}\cdot \frac{q^i}{1-q} \\ &= \frac{1}{(1-p)(1-p_e')(1-q)} \sum_{i\ge1} q^i \left\{ \binom{2(i-1)}{i-1}[p_d''(1-p_d'')]^{i-1} - p_d''\binom{2i-1}{i-1}[p_d''(1-p_d'')]^{i-1} \right\} \\ &= \frac{q}{(1-p)(1-p_e')(1-q)} \sum_{i\ge1} \left[ \binom{2(i-1)}{i-1}(p_d''p_l'')^{i-1} - p_d''\binom{2i-1}{i-1}(p_d''p_l'')^{i-1} \right]. \end{aligned} \]

  最后的最后,研究级数 \(\sum_{i\ge0}\binom{2i}{i}\)\(\sum_{i\ge0}\binom{2i-1}{i}\)。考虑到 Catalan 数的 GF:

\[\begin{aligned} C(x) &= \sum_{i\ge0}\frac{\binom{2i}{i}}{i+1}x^i\\ &= \frac{1-(1-4x)^{\frac{1}{2}}}{2}, \end{aligned} \]

利用位移和求导消掉分母,得到 \(F(x)=\sum_{i\ge0}\binom{2i}{i}x^i\) 的封闭形式:

\[\begin{aligned} \lbrack xC(x)\rbrack' &= \left[ \frac{1-(1-4x)^{\frac{1}{2}}}{2} \right]' \\ &= (1-4x)^{-\frac{1}{2}} \\ &= F(x). \end{aligned} \]

接着用 \(F(x)\) 配凑出 \(G(x)=\sum_{i\ge0}\binom{2i}{i+1}x^i\),结果是

\[G(x)=\frac{1-(1-4x)^{\frac{1}{2}}}{2x}. \]

  将结果代入 \(\mathcal{A}\)

\[\mathcal{A} = \frac{q}{(1-p)(1-p_e')(1-q)}\left\{ (1-4p_d''p_l'')^{-\frac{1}{2}} - \frac{1}{2p_l''}\left[ (1-4p_d''p_l'')^{-\frac{1}{2}}-1 \right] \right\} \]

能直接 \(\mathcal O(1)\) 计算啦。顺便检查一下 \((1-4p_d''p_l'')\) 能否开根。注意到 \(p_d''+p_l''\le 1\),所以

\[\begin{aligned} p_d''p_l''&\le \frac{(p_l''+p_r'')^2}{4}\\ &\le \frac{1}{4}. \end{aligned} \]

能开根,计算即可。注意特判 \(p=1\)\(p_l=0\) 的情况(不然会爆 nan qwq)。

\(\mathcal{Code}\)

/*~Rainybunny~*/

#include <cmath>
#include <cstdio>
#include <cassert>

#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i )

const int N = 1e7;
double pl, pd, pe, p, f[N + 5], g[N + 5];

inline void solve() {
    if ( p == 1 ) return void( printf( "%.12f\n", pl ) );
    if ( pl == 0 ) return void( printf( "%.12f\n", 0. ) );
    double c = pe * ( 1 - p ), // pe'
      a = ( 1 - p ) * pl / ( 1 - c ), // pl''
      b = ( 1 - p ) * pd / ( 1 - c ), // pd''
      q = a / ( 1 - b ), r = a * b, // pl''/(1-pd''); pl''pd''
      u = 1 / sqrt( 1 - 4 * r );
    printf( "%.12f\n", q / ( 1 - p ) / ( 1 - c ) / ( 1 - q )
      * ( !a || !b ? 1 : ( u - b / ( 2 * r ) * ( u - 1 ) ) ) );
}

int main() {
    freopen( "augury.in", "r", stdin );
    freopen( "augury.out", "w", stdout );

    int T;
    scanf( "%*d %d", &T );
    while ( T-- ) {
        scanf( "%lf %lf %lf", &pl, &pd, &p ), pe = 1 - pl - pd;
        solve();
    }
    return 0;
}

posted @ 2021-07-16 07:54  Rainybunny  阅读(55)  评论(0编辑  收藏  举报