Solution -「ZJOI 2019」「洛谷 P5326」开关
\(\mathcal{Description}\)
Link.
有 \(n\) 个开关,初始时所有开关的状态为 \(0\)。给定开关的目标状态 \(s_1,s_2,\cdots,s_n\)。每次操作中会以正比于 \(p_i\) 的概率拨动开关 \(i\)。求开关达到目标状态的期望操作次数,对 \(998244353\) 取模。
\(n\le100\),\(\sum p\le5\times10^4\)。
\(\mathcal{Solution}\)
不妨令 \(p_i\) 为一次操作拨动 \(i\) 的概率。设 \(F(x)\) 为“\(i\) 次操作后开关是目标状态的概率”的 EGF,\(G(x)\) 为“\(i\) 次操作后回到全零状态的概率”的 EGF。考虑每个开关是否需要被拨动,得到
代入 \(s_i=0~(i=1,2,\dots,n)\) 即得
设 \(H(x)\) 为“\(i\) 次操作第一次使开关达到目标状态的概率”的 EGF。\(F\) 和 \(H\) 的区别在于是否接受“多次回到目标状态”,而“回到目标状态”正对应着 \(G\) 的意义,它们可以建立等量关系
故欲求期望 \(H'(1)\),仅需求 \((F\cdot G^{-1})'(1)\)。
设 \(u_{1-i}=2^n[e^{ix}]F(x)\),\(v_{1-i}=2^n[e^{ix}]G(x)\),则有
同理地,对于 \(v_i\):
在此基础上考虑所求答案:
注意 \(e^{ix}=\operatorname{EGF}\lang 1,i,i^2,\cdots\rang\),将其统一转为 \(\operatorname{OGF}\lang 1,i,i^2,\cdots\rang=\frac{1}{1-ix}\),此时 \(H\) 的含义变为概率的 OGF。可以得到
记 \(s(x)=u_0+\sum_{i\not=1}u_{1-i}\frac{1-x}{1-ix}\),\(t(x)=v_0+\sum_{i\not=1}v_{1-i}\frac{1-x}{1-ix}\)。由于有 \(\left(\frac{1-x}{1-ix}\right)'(1)=\frac{1}{1-i}\),可知
而显然又有 \(s(1)=t(1)=u_0=v_0=1\),则对于 \(H'(1)\):
故仅需求出 \(u_i\) 和 \(v_i\),有意义的 \(i\) 仅有 \(\mathcal O(\sum p)\)(其中 \(p\) 即输入)个,背包一下,即可 \(\mathcal O(nm)\) 求解。
\(\mathcal{Code}\)
/* Clearink */
#include <cstdio>
#define rep( i, l, r ) for ( int i = l, rpbound##i = r; i <= rpbound##i; ++i )
#define per( i, r, l ) for ( int i = r, rpbound##i = l; i >= rpbound##i; --i )
const int MAXN = 100, MAXS = 5e4, MOD = 998244353;
int n, s[MAXN + 5], p[MAXN + 5], u[MAXS + 5], v[MAXS + 5];
inline int mul( const long long a, const int b ) { return a * b % MOD; }
inline int sub( int a, const int b ) { return ( a -= b ) < 0 ? a + MOD : a; }
inline int add( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
inline int mpow( int a, int b ) {
int ret = 1;
for ( ; b; a = mul( a, a ), b >>= 1 ) ret = mul( ret, b & 1 ? a : 1 );
return ret;
}
int main() {
scanf( "%d", &n );
rep ( i, 1, n ) scanf( "%d", &s[i] );
int sp = 0;
rep ( i, 1, n ) scanf( "%d", &p[i] ), sp += p[i];
u[0] = v[0] = 1;
rep ( i, 1, n ) per ( j, sp, p[i] ) {
u[j] = ( s[i] ? sub : add )( u[j], u[j - p[i]] );
v[j] = add( v[j], v[j - p[i]] );
}
// rep ( i, 0, sp ) printf( "%d%c", u[i], i ^ sp ? ' ' : '\n' );
// rep ( i, 0, sp ) printf( "%d%c", v[i], i ^ sp ? ' ' : '\n' );
int ans = 0;
rep ( i, 1, sp ) {
ans = add( ans, mul( mpow( i << 1, MOD - 2 ), sub( v[i], u[i] ) ) );
}
printf( "%d\n", mul( ans, sp ) );
return 0;
}