Solution -「ARC 110D」Binomial Coefficient is Fun
\(\mathcal{Description}\)
Link.
给定非负整数序列 \(\{a_n\}\),设 \(\{b_n\}\) 是一个非负整数序列且 \(\sum_{i=1}^nb_i\le m\),求
\[\sum_{\{b_n\}}\prod_{i=1}^n\binom{b_i}{a_i}\bmod(10^9+7)
\]
\(n,a_i\le2\times10^3\)。
\(\mathcal{Solution}\)
鉴于这是 ARC D,可以直观感受到是一个代码不长的组合意义题。(
考虑一个 \(\prod_{i=1}^n\binom{b_i}{a_i}\) 的意义:
有 \(m\) 个球排成一行,将其分成 \(n+1\) 段,第 \(i~(i\le n)\) 段长度 \(b_i\),再从这些段内选 \(a_i\) 个球。
那么对其求和,意义即为:
有 \(m\) 个球排成一行,将其任意分成 \(n+1\) 段,再从前 \(n\) 段内每段选 \(a_i\) 个球。
把“分段”当成球,所以:
有 \(m+n\) 个球排成一行,先选 \(a_1\) 个球,再选 \(1\) 个球,接着选 \(a_2\) 个球,再选 \(1\) 个球……
进一步:
有 \(m+n\) 个球排成一行,选 \(n+\sum_{i=1}^na_i\) 个球。
故答案为 \(\binom{n+m}{n+\sum_{i=1}^na_i}\)。复杂度 \(\mathcal O(\sum_{i=1}^na_i)\)。
\(\mathcal{Code}\)
/* Clearink */
#include <cstdio>
#define rep( i, l, r ) for ( int i = l, rpbound##i = r; i <= rpbound##i; ++i )
#define per( i, r, l ) for ( int i = r, rpbound##i = l; i >= rpbound##i; --i )
const int MOD = 1e9 + 7, MAXN = 2e3;
int n, m, fac[MAXN + 5], inv[MAXN * MAXN + 5];
inline int mul ( const long long a, const int b ) { return a * b % MOD; }
inline void init ( const int n ) {
inv[1] = 1;
rep ( i, 2, n ) inv[i] = mul ( inv[MOD % i], MOD - MOD / i );
}
inline int comb ( const int n, const int m ) {
if ( n < m ) return 0;
int ret = 1;
for ( int i = 1; i <= m; ++i ) ret = mul ( ret, mul ( n - i + 1, inv[i] ) );
return ret;
}
int main () {
scanf ( "%d %d", &n, &m );
int s = 0;
for ( int i = 1, a; i <= n; ++i ) {
scanf ( "%d", &a );
s += a;
}
init ( s + n );
printf ( "%d\n", comb ( n + m, s + n ) );
return 0;
}