Solution -「CF 1342E」Placing Rooks
\(\mathcal{Description}\)
Link.
在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足:
- 所有格子都可以被攻击到。
- 恰好存在 \(k\) 对车可以互相攻击。
的摆放方案数,对 \(998244353\) 取模。
\(n\le2\times10^5\)。
\(\mathcal{Solution}\)
这道《蓝题》嗷,看来兔是个傻子。
从第一个条件入手,所有格子可被攻击,那就有「每行都有车」或「每列都有车」成立。不妨设每行有车,则第二个条件中的“互相攻击”仅能由同列的车满足,可以得出有车的列数为 \(n-k\)。
\(n\) 个不同行棋子放入 \(n-k\) 个不同列,方案数:
\[A_n^{n-k}{n \brace n-k}
\]
若 \(k\not=0\),明显沿对角线对称摆放所有棋子得到新方案,故答案 \(\times2\)。
复杂度 \(\mathcal O(n)\)。
\(\mathcal{Code}\)
/* Clearink */
#include <cstdio>
const int MAXN = 2e5, MOD = 998244353;
int n, m, fac[MAXN + 5], ifac[MAXN + 5];
inline int mul ( const long long a, const int b ) { return a * b % MOD; }
inline int sub ( int a, const int b ) { return ( a -= b ) < 0 ? a + MOD : a; }
inline int add ( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
inline int sqr ( const int a ) { return mul ( a, a ); }
inline int qkpow ( int a, int b ) {
int ret = 1;
for ( ; b; a = mul ( a, a ), b >>= 1 ) ret = mul ( ret, b & 1 ? a : 1 );
return ret;
}
inline void init () {
fac[0] = 1;
for ( int i = 1; i <= n; ++i ) fac[i] = mul ( i, fac[i - 1] );
ifac[n] = qkpow ( fac[n], MOD - 2 );
for ( int i = n - 1; ~i; --i ) ifac[i] = mul ( i + 1, ifac[i + 1] );
}
inline int comb ( const int n, const int m ) {
return n < m ? 0 : mul ( fac[n], mul ( ifac[m], ifac[n - m] ) );
}
inline int stir ( const int n, const int m ) {
int ret = 0;
for ( int i = 0; i <= m; ++i ) {
ret = ( i & 1 ? sub : add )( ret,
mul ( comb ( m, i ), qkpow ( m - i, n ) ) );
}
return mul ( ret, ifac[m] );
}
int main () {
scanf ( "%d %d", &n, &m );
if ( m > n - 1 ) return puts ( "0" ), 0;
init ();
int ans = mul ( mul ( fac[n], ifac[m] ), stir ( n, n - m ) );
if ( m ) ans = add ( ans, ans );
printf ( "%d\n", ans );
return 0;
}