Live2D

Solution -「LGR-087」「洛谷 P6860」象棋与马

\(\mathcal{Description}\)

  Link.

  在一个 \(\mathbb R^2\)\((0,0)\) 处有一颗棋子,对于参数 \(a,b\),若它当前坐标为 \((x,y)\),则它下一步可以走到 \((x\pm a,y\pm b)\)\((x\pm b,y\pm a)\)。令 \(p(s,t)\) 表示 \(a=s,b=t\) 时,棋子是否能走遍所有整点。求:

\[\sum_{i=1}^n\sum_{j=1}^np(a,b) \]

  答案自然溢出。

  \(T\) 组数据,\(nT\le10^{11}\)

\(\mathcal{Solution}\)

  首先来描述 \(p(s,t)\),运用“组合操作”的思想,一颗棋子能走到所有整点,当且仅当它能位移 \((\pm 1,0)\)\((0,\pm 1)\)。结合样例想一下发现 \(p(s,t)=[2\not|(s+t)\land\gcd(s,t)=1]\)。于是问题等价于求 \(n\) 以内奇偶性不同且互素的数对个数。推式子:

\[\begin{aligned} \sum_{i=1}^n\sum_{j=1}^n[2\not|(s+t)\land\gcd(s,t)=1]&=\sum_{i=1}^n\sum_{j=1}^n[\gcd(i,j)=1]-\sum_{i=1}^n\sum_{j=1}^n[2\not|i][2\not|j][\gcd(i,j)=1]\\ &=\sum_{d=1}^n\mu(d)\lfloor\frac{n}{d}\rfloor^2-\sum_{d=1}^n[2\not|d]\mu(d)\lceil\frac{n}{d}\rceil^2 \end{aligned} \]

  所以问题在于求:

\[\sum_{i=1}^n[2|i]\mu(i)=-\sum_{i=1}^{\lfloor\frac{n}2\rfloor}\mu(i)+\sum_{i=1}^{\lfloor\frac{n}2\rfloor}[2|n]\mu(i) \]

  利用 \(\mu\) 积性,\(2\) 与奇数互素可以化成后面的样子,前一项杜教筛,后一项递归到规模小一半的原问题,记忆化一下直接计算即可。

  复杂度 \(\mathcal O(n^{\frac{2}3})\)(?

\(\mathcal{Code}\)

  求奇偶 \(\mu\) 的函数写得有点丑,知道意思就行 owo。

/* Clearink */

#include <cstdio>
#include <tr1/unordered_map>

typedef unsigned long long ULL;

const int MAXN = 7e6;
ULL n;
int pn, pr[MAXN + 5], mu[MAXN + 5], mus[MAXN + 5], emus[MAXN + 5];
bool vis[MAXN + 5];
std::tr1::unordered_map<ULL, ULL> remmu, rememu;

inline void sieve ( const int n ) {
	mu[1] = mus[1]= 1;
	for ( int i = 2; i <= n; ++ i ) {
		if ( ! vis[i] ) pr[++ pn] = i, mu[i] = -1;
		for ( int j = 1, t; j <= pn && ( t = i * pr[j] ) <= n; ++ j ) {
			vis[t] = true;
			if ( !( i % pr[j] ) ) break;
			mu[t] = -mu[i];
		}
		mus[i] = mus[i - 1] + mu[i];
		emus[i] = emus[i - 1] + !( i & 1 ) * mu[i];
	}
}

inline ULL calcMus ( const ULL n ) {
	if ( n <= MAXN ) return mus[n];
	if ( remmu.count ( n ) ) return remmu[n];
	ULL ret = 1;
	for ( ULL l = 2, r; l <= n; l = r + 1 ) {
		r = n / ( n / l );
		ret -= ULL ( r - l + 1 ) * calcMus ( n / l );
	}
	return remmu[n] = ret;
}

inline ULL calcEvenMus ( const ULL n ) {
	if ( n <= MAXN ) return emus[n];
	if ( rememu.count ( n ) ) return rememu[n];
	return rememu[n] = calcEvenMus ( n >> 1 ) - calcMus ( n >> 1 );
}

inline ULL calcOddMus ( const ULL n ) {
	return calcMus ( n ) - calcEvenMus ( n );
}

int main () {
	sieve ( MAXN );
	int T;
	for ( scanf ( "%d", &T ); T --; ) {
		scanf ( "%llu", &n ); ULL ans = 0;
		for ( ULL l = 1, r; l <= n; l = r + 1 ) {
			r = n / ( n / l );
			ans += ( calcMus ( r ) - calcMus ( l - 1 ) ) * ( n / l ) * ( n / l );
			ans -= ( calcOddMus ( r ) - calcOddMus ( l - 1 ) )
				* ( n / l + 1 >> 1 ) * ( n / l + 1 >> 1 );
		}
		printf ( "%llu\n", ans );
	}
	return 0;
}
posted @ 2020-10-20 16:48  Rainybunny  阅读(139)  评论(0编辑  收藏  举报