Solution -「CF 1380F」Strange Addition
\(\mathcal{Description}\)
Link.
定义两个数在进行加法时,进位单独作为一位。例如:
.
给定一个 \(n\) 为数和 \(m\) 次修改操作,每次修改会修改 \(n\) 位数的某一位数字。在每次修改后求出有多少对数以上述规则相加后的得数为这个 \(n\) 为数。
\(n,m\le5 \times 10^5\)。
\(\mathcal{Solution}\)
显然的 DDP。
令 \(f_i\) 表示加和为目标数后 \(i\) 为数字的数对数量。那么:
\[ w_{i+1}
\begin{pmatrix}
f_i\\
f_{i-1}
\end{pmatrix}
=
\begin{pmatrix}
f_{i+1}\\
f_i
\end{pmatrix}
\]
其中 \(w_i~(i=1,2,\dots,18)\) 分别表示每种“一位数”的转移矩阵,只有 \(i=1\) 需要特殊处理。
具体看代码吧(摊手。
\(\mathcal{Code}\)
/* Clearink */
#include <cstdio>
inline int rint () {
int x = 0, f = 1; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () ) f = s == '-' ? -f : f;
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x * f;
}
template<typename Tp>
inline void wint ( Tp x ) {
if ( x < 0 ) putchar ( '-' ), x = ~ x + 1;
if ( 9 < x ) wint ( x / 10 );
putchar ( x % 10 ^ '0' );
}
const int MAXN = 5e5, MOD = 998244353;
const int w[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 };
int n, m;
char num[MAXN + 5];
inline int add ( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
inline int mul ( long long a, const int b ) { return ( a *= b ) < MOD ? a : a % MOD; }
struct Matrix {
int mat[2][2];
Matrix (): mat {} {}
Matrix ( const int a, const int b, const int c, const int d ):
mat { a, b, c, d } {}
inline int* operator [] ( const int key ) { return mat[key]; }
inline Matrix operator * ( Matrix& t ) const {
Matrix ret;
for ( int i = 0; i < 2; ++ i ) {
for ( int k = 0; k < 2; ++ k ) {
for ( int j = 0; j < 2; ++ j ) {
ret[i][j] = add ( ret[i][j], mul ( mat[i][k], t[k][j] ) );
}
}
}
return ret;
}
inline void _show () const {
#ifdef RYBY
for ( int i = 0; i < 2; ++ i ) {
for ( int j = 0; j < 2; ++ j ) {
printf ( "%d ", mat[i][j] );
}
putchar ( '\n' );
}
#endif
}
};
inline Matrix digit ( const int d ) {
return Matrix ( w[num[d] - '0'], num[d] ^ '1' || d == n ? 0 : w[10 + num[d + 1] - '0'], 1, 0 );
}
struct SegmentTree {
Matrix mat[MAXN * 2 + 5];
inline int id ( const int l, const int r ) { return ( l + r ) | ( l != r ); }
inline int build ( const int l, const int r ) {
int rt = id ( l, r ), mid = l + r >> 1;
if ( l == r ) return ( mat[rt] = digit ( l ) )._show (), rt;
int lc = build ( l, mid ), rc = build ( mid + 1, r );
return mat[rt] = mat[lc] * mat[rc], rt;
}
inline void update ( const int l, const int r, const int x, const char d ) {
int rt = id ( l, r ), mid = l + r >> 1;
if ( l == r ) return num[l] = d, mat[rt] = digit ( l ), void ();
if ( x <= mid ) update ( l, mid, x, d );
else update ( mid + 1, r, x, d );
mat[rt] = mat[id ( l, mid )] * mat[id ( mid + 1, r )];
}
} segt;
int main () {
n = rint (), m = rint ();
scanf ( "%s", num + 1 );
int rt = segt.build ( 1, n );
for ( int x, d; m --; ) {
x = rint (), d = rint ();
segt.update ( 1, n, x, d ^ '0' );
if ( x > 1 ) segt.update ( 1, n, x - 1, num[x - 1] );
segt.mat[rt]._show ();
wint ( segt.mat[rt][0][0] ), putchar ( '\n' );
}
return 0;
}