Live2D

Solution -「CF 1392G」Omkar and Pies

\(\mathcal{Description}\)

  Link.

  给定两个长度为 \(K\)\(01\)\(S,T\)\(n\) 组操作 \((a_i,b_i)\),意义为交换 \(S_{a_i}\)\(S_{b_i}\)。你需要执行一段长度不小于 \(m\) 的连续操作区间,最大化 \(S\)\(T\) 相同的位数。求出最大相同位数。

  \(K\le20\)\(m\le n\le10^6\)

\(\mathcal{Solution}\)

  一个简单的性质:\(S\)\(T\) 同时执行相同操作,答案不变。

  那么可以想到利用后缀和——记 \(S_i\) 表示 \(S\) 依次执行操作 \(i\sim n\) 所得到的串,\(T_i\) 同理。根据性质,\(S\) 操作区间 \([l,r]\) 后与 \(T\) 的相同位数等于 \(S_l\)\(T_{r+1}\) 的相同位数。

  现在问题变成,给定两个长为 \(n+1\) 的串序列 \(\{S_{n+1}\},\{T_{n+1}\}\),求:

\[ \max_{1\le i+m-1\le r\le n+1}\{\operatorname{same}(S_i,T_j)\} \]

  其中 \(\operatorname{same}\) 表示两个串的相同位数。

  接下来考虑 DP。定义:

\[ f(0,v)=\min_{v\in S_i}i\\ f(1,v)=\max_{v\in T_i}i \]

  枚举二进制 \(v\),转移,如果有 \(f(0,v)+m-1\le f(1,v)\),就可以用 \(\operatorname{popcount}(v)\) 更新答案。

\(\mathcal{Code}\)

/* Clearink */

#include <cstdio>

inline int rint ( const int base = 10 ) {
	int x = 0; char s = getchar ();
	for ( ; s < '0' || '9' < s; s = getchar () );
	for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * base + ( s ^ '0' );
	return x;
}

template<typename Tp>
inline void wint ( Tp x ) {
	if ( x < 0 ) putchar ( '-' ), x = ~ x + 1;
	if ( 9 < x ) wint ( x / 10 );
	putchar ( x % 10 ^ '0' );
}

inline void chkmin ( int& a, const int b ) { b < a ? a = b : 0; }
inline void chkmax ( int& a, const int b ) { a < b ? a = b : 0; }

const int MAXN = 1e6, MAXS = 1 << 20;
int n, m, S, T, K, a[MAXN + 5], b[MAXN + 5], p[MAXN + 5], f[2][MAXS | 5];

inline int swp ( int x ) {
	int ret = 0;
	for ( int i = 0; i < K; ++ i ) ret |= ( ( x >> i ) & 1 ) << p[i];
	return ret;
}

int main () {
	n = rint (), m = rint (), K = rint ();
	S = rint ( 2 ), T = rint ( 2 );
	for ( int i = 1; i <= n; ++ i ) a[i] = K - rint (), b[i] = K - rint ();
	for ( int s = 0; s < 1 << K; ++ s ) f[0][s] = n + 1, f[1][s] = -1;
	f[1][T] = n + 1;
	for ( int i = 0; i < K; ++ i ) p[i] = i;
	for ( int i = n; i; -- i ) {
		p[a[i]] ^= p[b[i]] ^= p[a[i]] ^= p[b[i]];
		chkmin ( f[0][swp ( S )], i ), chkmax ( f[1][swp ( T )], i );
	}
	int ans = -1, ansl = -1, ansr = -1;
	for ( int s = ( 1 << K ) - 1; ~s; -- s ) {
		for ( int i = 0; i < K; ++ i ) {
			if ( !( ( s >> i ) & 1 ) ) continue;
			chkmin ( f[0][s ^ ( 1 << i )], f[0][s] );
			chkmax ( f[1][s ^ ( 1 << i )], f[1][s] );
		}
		if ( f[1][s] - f[0][s] >= m ) {
			if ( int t = __builtin_popcount ( s ); ans < t ) {
				ans = t, ansl = f[0][s], ansr = f[1][s] - 1;
			}
		}
	}
	ans = 2 * ans + K - __builtin_popcount ( S ) - __builtin_popcount ( T );
	wint ( ans ), putchar ( '\n' );
	wint ( ansl ), putchar ( ' ' ), wint ( ansr ), putchar ( '\n' );
	return 0;
}
posted @ 2020-09-26 12:46  Rainybunny  阅读(117)  评论(0编辑  收藏  举报