Solution -「CF 1361E」James and the Chase
\(\mathcal{Description}\)
Link.
给定 \(n\) 个点 \(m\) 条边的有向弱连通图。称一个点是“好点”当且仅当从该点出发,不存在到同一点的两条不同简单路径。求出所有好点,但若好点个数少于 \(n \times 20\%\),仅输出 -1
。
多测,\(n,\sum_{}^{} n \le10^5\),\(m,\sum_{}^{} m\le2\times10^5\)。
\(\mathcal{Solution}\)
先来想一想如何判断某个点 \(r\) 是好点。以 \(r\) 为根建出任意一棵外向生成树,不难发现 \(r\) 是好点,当且仅当树外不存在横叉边(有向 DFS 树是可能存在横叉边的)。
假设我们已经得到了一点 \(r\) 为好点,如何判断出其他点是否是好点呢?考虑在刚才那棵外向生成树上的某一非根结点 \(u\),若从 \(u\) 子树内向 \(u\) 的祖先的返祖边多于一条,就显然不合法,否则若 \(u\) 能到达最高的祖先合法,\(u\) 也必然合法。
最后一个问题,怎么找到一个 \(r\) 呢?考虑到 \(20\%\) 的限制,随机 \(100\) 个点进行好点测验,如果都不是好点直接输出 -1
。错误率为 \(\left( \frac{4}{5} \right)^{100}\),非常可观。
复杂度 \(\mathcal O(100\sum_{}^{} n)\)。
\(\mathcal{Code}\)
/* Clearink */
#include <cstdio>
#include <random>
inline int rint () {
int x = 0, f = 1; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () ) f = s == '-' ? -f : f;
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x * f;
}
template<typename Tp>
inline void wint ( Tp x ) {
if ( x < 0 ) putchar ( '-' ), x = ~ x + 1;
if ( 9 < x ) wint ( x / 10 );
putchar ( x % 10 ^ '0' );
}
const int MAXN = 1e5, MAXM = 2e5;
int n, m, ecnt, head[MAXN + 5], vtag[MAXN + 5], upc[MAXN + 5], top[MAXN + 5];
bool bad[MAXN + 5];
std::mt19937 rnd ( 20050913 );
struct Edge { int to, nxt; } graph[MAXM + 5];
inline void link ( const int s, const int t ) {
graph[++ ecnt] = { t, head[s] };
head[s] = ecnt;
}
inline bool check ( const int u ) {
vtag[u] = 1;
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( !vtag[v = graph[i].to] ) {
if ( !check ( v ) ) return false;
} else if ( vtag[v] == 2 ) {
return false;
}
}
vtag[u] = 2;
return true;
}
inline void mark ( const int u ) {
top[u] = u;
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( !vtag[v = graph[i].to] ) {
vtag[v] = vtag[u] + 1;
mark ( v ), upc[u] += upc[v];
if ( vtag[top[v]] < vtag[top[u]] ) top[u] = top[v];
} else {
++ upc[u], -- upc[v];
if ( vtag[v] < vtag[top[u]] ) top[u] = v;
}
}
}
inline int spread ( const int u ) {
vtag[u] = 1, bad[u] = upc[u] > 1;
int ret = !( bad[u] |= bad[top[u]] );
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( !vtag[v = graph[i].to] ) {
ret += spread ( v );
}
}
return ret;
}
inline void clear () {
ecnt = 0;
for ( int i = 1; i <= n; ++ i ) {
head[i] = vtag[i] = upc[i] = top[i] = bad[i] = 0;
}
}
int main () {
for ( int T = rint (); T --; ) {
clear ();
n = rint (), m = rint ();
for ( int i = 1, u, v; i <= m; ++ i ) {
u = rint (), v = rint ();
link ( u, v );
}
int rt = 0;
for ( int i = 1; i <= 100 && !rt; ++ i ) {
int u = rnd () % n + 1;
for ( int i = 1; i <= n; ++ i ) vtag[i] = 0;
if ( check ( u ) ) rt = u;
}
if ( !rt ) { puts ( "-1" ); continue; }
for ( int i = 1; i <= n; ++ i ) vtag[i] = 0;
vtag[rt] = 1, mark ( rt );
for ( int i = 1; i <= n; ++ i ) vtag[i] = 0;
int cnt = spread ( rt );
if ( cnt * 5 < n ) { puts ( "-1" ); continue; }
for ( int i = 1, f = 0; i <= n; ++ i ) {
if ( !bad[i] ) {
if ( f ) putchar ( ' ' );
f = 1, printf ( "%d", i );
}
}
putchar ( '\n' );
}
return 0;
}
\(\mathcal{Details}\)
这种随机乱搞题得放开点脑洞啊,看到这种 \(20\%\) 之类的奇怪限制就可以往这方面想啦。