Solution -「CF 1375G」Tree Modification
\(\mathcal{Description}\)
Link.
给定一棵 \(n\) 个结点的树,每次操作选择三个结点 \(a,b,c\),满足 \((a,b),(b,c)\in E\),并令 \(a\) 的所有邻接点(包括 \(b\))与 \(c\) 邻接且不再与 \(a\) 邻接;再令 \(a\) 与 \(c\) 邻接。求至少几次操作使树变为菊花图。
\(n\le2\times10^5\)。
操作图例:
\(\mathcal{Solution}\)
和 CF1025G 有点类似。不妨令 \(1\) 为树的根,结点 \(u\) 的深度记为 \(d(u)\),\(d(1)=1\)。构造势能函数 \(\Phi:T\rightarrow\mathbb N_+\),有:
\[\Phi(T)=\sum_{u\in T}[2|d(u)]
\]
先考虑目标状态,菊花图的势能显然为 \(1\)(根是花瓣)或 \(n-1\)(根是花蕊)。再观察一次操作带来的势能变化,发现仅有 \(a\) 结点的深度的奇偶性改变,那么:
\[\Delta\Phi=\pm1
\]
记初始时树为 \(S\),可知答案为:
\[\min\{(n-1)-\Phi(S),\Phi(S)-1\}
\]
复杂度 \(\mathcal O(n)\)。嗯唔,做完了 www!
\(\mathcal{Code}\)
/* Clearink */
#include <cstdio>
inline int rint () {
int x = 0, f = 1; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () ) f = s == '-' ? -f : f;
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x * f;
}
template<typename Tp>
inline void wint ( Tp x ) {
if ( x < 0 ) putchar ( '-' ), x = ~ x + 1;
if ( 9 < x ) wint ( x / 10 );
putchar ( x % 10 ^ '0' );
}
const int MAXN = 2e5;
int n, ecnt, head[MAXN + 5], cnt[2];
struct Edge { int to, nxt; } graph[MAXN * 2 + 5];
inline void link ( const int s, const int t ) {
graph[++ ecnt] = { t, head[s] };
head[s] = ecnt;
}
inline void solve ( const int u, const int f, const int dep ) {
++ cnt[dep & 1];
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( ( v = graph[i].to ) ^ f ) {
solve ( v, u, dep + 1 );
}
}
}
int main () {
n = rint ();
for ( int i = 1, u, v; i < n; ++ i ) {
u = rint (), v = rint ();
link ( u, v ), link ( v, u );
}
solve ( 1, 0, 0 );
printf ( "%d\n", ( cnt[0] < cnt[1] ? cnt[0] : cnt[1] ) - 1 );
return 0;
}
\(\mathcal{Details}\)
势能分析的方法有点像数学上的特征值法。这种操作题没思路的时候不妨研究一下单次操作,构造出一个变化极为简单的“特征”来快速求解。