Solution -「洛谷 P5787」「模板」二分图(线段树分治)
\(\mathcal{Description}\)
Link.
\(n\) 个结点的图,\(m\) 条形如 \((u,v,l,r)\) 的边,表示一条连接 \(u\) 和 \(v\) 的无向边会在时间 \((l,r]\) 内存在,时间范围在 \([0,K]\)。判断每个时刻的图是否是二分图。
\(n,K\le10^5\),\(m\le2\times10^5\)。
\(\mathcal{Solution}\)
线段树分治其实和线段树没啥关系。(
个人感觉线段树分治节约时间的方法和整体二分很像——把一些询问都需要的信息统一进行,以减少维护修改操作的次数。线段树二分是在时间轴上二分。记当前时间区间 \([l,r]\),作用所有完全覆盖 \([l,r]\) 的修改(它们是这个区间内的询问都需要的),然后递归左右区间,回溯时撤销当前区间的所有修改。
对于本题,可以用 \(n+n\) 个虚点的并查集维护二分图——对于一条边 \((u,v)\),合并 \((u,v')\) 和 \((v,u')\)。若 \(u,v\) 在同一集合,显然图上已存在奇环,当前时间区间内的所有询问全部判否,否则递归解答即可。
复杂度 \(\mathcal O(n\log^2 n)\)。
\(\mathcal{Code}\)
/* Clearink */
#include <cstdio>
#include <vector>
inline int rint () {
int x = 0, f = 1; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () ) f = s == '-' ? -f : f;
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x * f;
}
template<typename Tp>
inline void wint ( Tp x ) {
if ( x < 0 ) putchar ( '-' ), x = ~ x + 1;
if ( 9 < x ) wint ( x / 10 );
putchar ( x % 10 ^ '0' );
}
const int MAXN = 1e5, MAXM = 2e5;
int n, m, K;
struct Edge {
int u, v, l, r;
inline void read () { u = rint (), v = rint (), l = rint (), r = rint (); }
} tmp;
std::vector<Edge> alle;
struct DSU {
int fa[MAXN * 2 + 5], siz[MAXN * 2 + 5];
int top, ry[MAXM * 2 + 5], rfa[MAXM * 2 + 5], rsiz[MAXM * 2 + 5];
inline void init () { for ( int i = 1; i <= n << 1; ++ i ) siz[fa[i] = i] = 1; }
inline int find ( const int x ) { return x ^ fa[x] ? find ( fa[x] ) : x; }
inline bool unite ( int x, int y ) {
if ( ( x = find ( x ) ) == ( y = find ( y ) ) ) return false;
if ( siz[x] < siz[y] ) x ^= y ^= x ^= y;
++ top, ry[top] = y, rfa[top] = fa[y], rsiz[top] = siz[x];
return siz[fa[y] = x] += siz[y], true;
}
inline void undo ( const int sta ) {
for ( ; top > sta; -- top ) {
siz[fa[ry[top]]] = rsiz[top];
fa[ry[top]] = rfa[top];
}
}
} dsu;
inline void solve ( const int l, const int r, std::vector<Edge>& vec ) {
int mid = l + r >> 1, curs = dsu.top, dis = 0;
std::vector<Edge> vecL, vecR;
for ( auto e: vec ) {
if ( e.l <= l && r <= e.r ) {
if ( dsu.find ( e.u ) == dsu.find ( e.v ) ) {
dis = true, vecL.clear (), vecR.clear ();
break;
}
dsu.unite ( e.u, e.v + n ), dsu.unite ( e.v, e.u + n );
} else {
if ( e.l <= mid ) vecL.push_back ( e );
if ( mid < e.r ) vecR.push_back ( e );
}
}
vec.clear ();
if ( dis ) for ( int i = l; i <= r; ++ i ) puts ( "No" );
else if ( l ^ r ) solve ( l, mid, vecL ), solve ( mid + 1, r, vecR );
else puts ( "Yes" );
dsu.undo ( curs );
}
int main () {
n = rint (), m = rint (), K = rint ();
for ( int i = 1; i <= m; ++ i ) {
tmp.read (), ++ tmp.l;
alle.push_back ( tmp );
}
dsu.init (), solve ( 1, K, alle );
return 0;
}
\(\mathcal{Details}\)
左开右开,左开右闭,左闭右开,左闭右闭……傻傻分不清qwq。