Solution -「LOCAL」逃生
\(\mathcal{Description}\)
有 \(n\) 个人掉进了深度为 \(h\) 的坑里,第 \(i\) 个人的肩高为 \(a_i\),臂长为 \(b_i\)。设当前坑里人的集合为 \(S\),第 \(i\) 人能逃生,当且仅当 \(\sum_{j\in S}a_j+b_i\ge h\)。求最多逃生人数。
\(n\le2\times10^5\)。
\(\mathcal{Solution}\)
考虑在最优情况下,相邻两个逃生的人,设其肩高臂长分别为 \((a,b),(p,q)\),未逃生者肩高之和 \(s\),则现在有:
\[\begin{cases}
s+b\ge h\\
s-a+q\ge h
\end{cases}
\]
尝试交换两人顺序:
\[\begin{cases}
s+q\ge h\\
s-p+b\ge h
\end{cases}
\]
不难发现 \(b-p\le q-a\) 时,前式可推出后时,可结合题意理解为“前者逃生,考虑为后者手变短,那么后者手越长越优”。依此排序。
此后,顺序扫一遍,若当前人能逃生直接逃生。但为保证最优,我们需要最大化坑里人的 \(\sum a_i\)。这时考虑一个反悔操作——用逃生的一个人来替换当前这个人。显然由于贪心的排序,替换一定成立,只要逃生的人的肩高大于当前人,替换就会优化答案,所以直接抓肩高最大的人回坑里就好。
复杂度 \(\mathcal O(n\log n)\)。
\(\mathcal{Code}\)
#include <queue>
#include <cstdio>
#include <algorithm>
typedef long long LL;
inline int rint () {
int x = 0; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () );
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x;
}
const int MAXN = 2e5;
int n, H;
LL sum;
std::priority_queue<int> heap;
struct Person {
int a, b;
inline void read () { a = rint (), b = rint (); }
inline bool operator < ( const Person t ) const { return b - t.a < t.b - a; }
} per[MAXN + 5];
int main () {
freopen ( "escape.in", "r", stdin );
freopen ( "escape.out", "w", stdout );
n = rint ();
for ( int i = 1; i <= n; ++ i ) per[i].read (), sum += per[i].a;
H = rint ();
int ans = 0;
std::sort ( per + 1, per + n + 1 );
for ( int i = 1; i <= n; ++ i ) {
heap.push ( per[i].a );
if ( sum + per[i].b >= H ) ++ ans;
else sum += heap.top (), heap.pop ();
sum -= per[i].a;
}
printf ( "%d\n", ans );
return 0;
}
\(\mathcal{Details}\)
也是够勇的,不拍就过了这道智慧贪心题 owo!