Solution -「LOCAL」Burning Flowers
灼之花好评,条条生日快乐(假装现在 8.15)!
\(\mathcal{Description}\)
给定一棵以 \(1\) 为根的树,第 \(i\) 个结点有颜色 \(c_i\) 和光亮值 \(l_i\),定义树的权值为:
\[\sum_{\displaystyle u<v\land c_u=c_v\land\\\operatorname{LCA}(u,v)\not=u\land\operatorname{LCA}(u,v)\not=v}l_u\oplus l_v
\]
现有 \(m\) 次修改,每次修改某点的颜色或光亮值,求出每次修改后树的权值。
\(n,m\le10^5\),\(c_i\le n\),\(l_i<2^{20}\)。
\(\mathcal{Solution}\)
分颜色贡献,位运算拆位,基本姿势 w!
假定树的结点全部同色且光亮值为 \(0/1\),考虑点 \(u\) 的贡献,显然先加上所有能与它异或成 \(1\) 的结点个数,再减去在子树内或在祖先上的结点个数。而从动态修改的角度,两者都能使用 BIT(树状数组)维护!
所以,枚举每个颜色 \(c\),对于每一个 bit,维护两个 BIT,分别保存子树内颜色为 \(c\) 且当前 bit 为 \(1\) 的结点个数和祖先上颜色为 \(c\) 且当前 bit 为 \(1\) 的结点个数,处理修改就暴力除去贡献再更新贡献即可。
复杂度 \(\mathcal O(20(n+m)\log n)\)。
\(\mathcal{Code}\)
#include <cstdio>
#include <vector>
#include <iostream>
typedef long long LL;
inline char fgc () {
static char buf[1 << 17], *p = buf, *q = buf;
return p == q && ( q = buf + fread ( p = buf, 1, 1 << 17, stdin ), p == q ) ? EOF : *p ++;
}
inline int rint () {
int x = 0; char s = fgc ();
for ( ; s < '0' || '9' < s; s = fgc () );
for ( ; '0' <= s && s <= '9'; s = fgc () ) x = x * 10 + ( s ^ '0' );
return x;
}
inline void wint ( const LL x ) {
if ( 9 < x ) wint ( x / 10 );
putchar ( x % 10 ^ '0' );
}
const int MAXN = 1e5;
int n, m, ecnt, head[MAXN + 5], col[MAXN + 5], val[MAXN + 5];
int dfc, dep[MAXN + 5], dfn[MAXN + 5], siz[MAXN + 5];
LL ans[MAXN + 5];
struct Edge { int to, nxt; } graph[MAXN * 2 + 5];
struct BinaryIndexTree {
int val[MAXN + 5];
inline int lowbit ( const int x ) { return x & -x; }
inline void update ( int x, const int k ) { for ( ; x <= n; x += lowbit ( x ) ) val[x] += k; }
inline int sum ( int x ) { int ret = 0; for ( ; x; x -= lowbit ( x ) ) ret += val[x]; return ret; }
inline int sum ( const int l, const int r ) { return sum ( r ) - sum ( l - 1 ); }
} facnt, soncnt, fabit[20], sonbit[20];
struct BitBucket {
int all, cnt[20];
inline void clear () { all = 0; for ( int i = 0; i < 20; ++ i ) cnt[i] = 0; }
inline void update ( const int x, const int k ) {
all += k;
for ( int i = 0; 1 << i <= x; ++ i ) {
if ( ( x >> i ) & 1 ) {
cnt[i] += k;
}
}
}
inline LL query ( const int x ) {
LL ret = 0;
for ( int i = 0; i < 20; ++ i ) {
if ( ( x >> i ) & 1 ) ret += 1ll * ( all - cnt[i] ) << i;
else ret += 1ll * cnt[i] << i;
}
return ret;
}
} buc;
struct Event {
int u, val, time, type;
Event () {}
Event ( const int tu, const int tv, const int tti, const int tty ):
u ( tu ), val ( tv ), time ( tti ), type ( tty ) {}
}; std::vector<Event> evt[MAXN + 5];
inline void link ( const int s, const int t ) {
graph[++ ecnt].to = t, graph[ecnt].nxt = head[s];
head[s] = ecnt;
}
inline void init ( const int u, const int f ) {
siz[u] = 1, dfn[u] = ++ dfc, dep[u] = dep[f] + 1;
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( ( v = graph[i].to ) ^ f ) {
init ( v, u ), siz[u] += siz[v];
}
}
}
inline void initEvent () {
m = rint ();
for ( int i = 1; i <= n; ++ i ) evt[col[i]].push_back ( Event ( i, val[i], 0, 1 ) );
for ( int i = 1, op, u, t; i <= m; ++ i ) {
op = rint (), u = rint (), t = rint ();
evt[col[u]].push_back ( Event ( u, val[u], i, 0 ) );
if ( op & 1 ) evt[col[u] = t].push_back ( Event ( u, val[u], i, 1 ) );
else evt[col[u]].push_back ( Event ( u, val[u] = t, i, 1 ) );
}
for ( int i = 1; i <= n; ++ i ) evt[col[i]].push_back ( Event ( i, val[i], m + 1, 0 ) );
}
inline LL queryFa ( const int u, const int val ) {
LL ret = 0;
int all = facnt.sum ( dfn[u] );
for ( int i = 0; i < 20; ++ i ) {
if ( ( val >> i ) & 1 ) ret += 1ll * ( all - fabit[i].sum ( dfn[u] ) ) << i;
else ret += 1ll * fabit[i].sum ( dfn[u] ) << i;
}
return ret;
}
inline void updateFa ( const int u, const int val, const int k ) {
int l = dfn[u], r = dfn[u] + siz[u];
facnt.update ( l, k ), facnt.update ( r, -k );
for ( int i = 0; 1 << i <= val; ++ i ) {
if ( ( val >> i ) & 1 ) {
fabit[i].update ( l, k );
fabit[i].update ( r, -k );
}
}
}
inline LL querySon ( const int u, const int val ) {
LL ret = 0;
int l = dfn[u], r = dfn[u] + siz[u] - 1;
int all = soncnt.sum ( l, r );
for ( int i = 0; i < 20; ++ i ) {
if ( ( val >> i ) & 1 ) ret += 1ll * ( all - sonbit[i].sum ( l, r ) ) << i;
else ret += 1ll * sonbit[i].sum ( l, r ) << i;
}
return ret;
}
inline void updateSon ( const int u, const int val, const int k ) {
soncnt.update ( dfn[u], k );
for ( int i = 0; 1 << i <= val; ++ i ) {
if ( ( val >> i ) & 1 ) {
sonbit[i].update ( dfn[u], k );
}
}
}
int main () {
freopen ( "cop.in", "r", stdin );
freopen ( "cop.out", "w", stdout );
n = rint ();
for ( int i = 1; i <= n; ++ i ) col[i] = rint ();
for ( int i = 1; i <= n; ++ i ) val[i] = rint ();
for ( int i = 1, u, v; i < n; ++ i ) {
u = rint (), v = rint ();
link ( u, v ), link ( v, u );
}
init ( 1, 0 ), initEvent ();
for ( int c = 1; c <= n; ++ c ) {
buc.clear ();
LL sum = 0, ill = 0;
for ( int i = 0; i ^ evt[c].size (); ++ i ) {
Event cur ( evt[c][i] );
if ( cur.type ) {
sum += buc.query ( cur.val ), buc.update ( cur.val, 1 );
ill += queryFa ( cur.u, cur.val ), updateFa ( cur.u, cur.val, 1 );
ill += querySon ( cur.u, cur.val ), updateSon ( cur.u, cur.val, 1 );
} else {
sum -= buc.query ( cur.val ), buc.update ( cur.val, -1 );
ill -= queryFa ( cur.u, cur.val ), updateFa ( cur.u, cur.val, -1 );
ill -= querySon ( cur.u, cur.val ), updateSon ( cur.u, cur.val, -1 );
}
if ( cur.time <= m ) {
ans[cur.time] += sum - ill;
ans[i + 1 == ( int ) evt[c].size () ? m + 1 : evt[c][i + 1].time] -= sum - ill;
}
}
}
wint ( ans[0] ), putchar ( '\n' );
for ( int i = 1; i <= m; ++ i ) printf ( "%lld", ans[i] += ans[i - 1] ), putchar ( '\n' );
return 0;
}
\(\mathcal{Details}\)
考场上卡常 \(\mathcal O(n(m+\log n))\) 骗到 \(50pts\) 心满意足 www。
这种类似离线的处理方法要感知到位,毕竟兔子这种码力持久化啊虚树啊都不可能考场敲出来 qwq(自暴自弃。