Solution -「ACM-ICPC BJ 2002」「POJ 1322」Chocolate
\(\mathcal{Description}\)
Link.
\(c\) 种口味的的巧克力,每种个数无限。每次取出一个,取 \(n\) 次,求恰有 \(m\) 个口味出现奇数次的概率。
\(\mathcal{Solution}\)
由于比较板(且要补的题太多),所以会简略一点。
首先,\(n,m\) 不同奇偶;\(m\) 大于 \(c\) 或 \(n\) 无解,特判掉。考虑到“取出”有序,引入 \(\text{EGF}\)。显然题目要求:
\[[x^n]\binom{c}{m}\left(\frac{e^x+e^{-x}}2\right)^{c-m}\left(\frac{e^x-e^{-x}}2\right)^m
\]
记后面这个式子为 \(G(x)\),推导:
\[\begin{aligned}G(x)&=\binom{c}{m}2^{-c}(e^x+e^{-x})^{c-m}(e^x-e^{-x})^m\\&=\binom{c}{m}2^{-c}\sum_{i=0}^{c-m}\sum_{j=0}^m(-1)^j\binom{c-m}{i}\binom{m}{j}e^{(c-2i-2j)x}\\&=\binom{c}{m}2^{-c}\sum_{i=0}^{c-m}\sum_{j=0}^m(-1)^j\binom{c-m}{i}\binom{m}{j}\sum_{k=0}^{+\infty}\frac{(c-2i-2j)^k}{k!}x^k\end{aligned}
\]
代入 \(k=n\),\(\mathcal O(n^2)\) 求解,注意精度。
\(\mathcal{Code}\)
#include <cstdio>
const int MAXC = 100;
int c, n, m;
double comb[MAXC + 5][MAXC + 5];
inline void init () {
comb[0][0] = 1;
for ( int i = 1; i <= MAXC; ++ i ) {
comb[i][0] = 1;
for ( int j = 1; j <= i; ++ j ) {
comb[i][j] = comb[i - 1][j - 1] + comb[i - 1][j];
}
}
}
inline double qkpow ( double a, int b ) {
double ret = 1;
for ( ; b; a *= a, b >>= 1 ) ret *= b & 1 ? a : 1.0;
return ret;
}
int main () {
init ();
while ( ~ scanf ( "%d", &c ) && c ) {
scanf ( "%d %d", &n, &m );
if ( ( n & 1 ) ^ ( m & 1 ) || m > c || m > n ) { puts ( "0.000" ); continue; }
double ans = 0;
for ( int i = 0; i <= c - m; ++ i ) {
for ( int j = 0; j <= m; ++ j ) {
ans += ( j & 1 ? -1 : 1 ) * comb[c - m][i]
* comb[m][j] * qkpow ( ( c - 2.0 * i - 2.0 * j ) / c, n );
}
}
ans = ans * comb[c][m] / qkpow ( 2, c );
printf ( "%.3f\n", ans );
}
return 0;
}