Solution -「HEOI/TJOI 2016」「洛谷 P2824」排序
\(\mathcal{Description}\)
Link.
给定排列 \(\{p_n\}\) 和 \(m\) 次局部排序操作,求操作完成后第 \(q\) 位的值。
\(n,m\le10^5\)。
\(\mathcal{Solution}\)
跟这道的核心套路(?)差不多。
若序列是 \(01\) 序列,局部排序就相当于把 \(1\) 扔到一端,把 \(0\) 扔到另一端,只需要知道区间 \(1\) 的个数就好。
二分答案 \(mid\),将排列中不小于 \(mid\) 的值设为 \(1\),其余设为 \(0\),暴力建新的线段树维护区间和,然后暴力处理每次排序操作,最后求到此时 \(q\) 位置的值(\(1\) 或 \(0\))。注意到这个值的意义——\(q\) 位置的值大于等于 / 小于 \(mid\),借此调整二分区间即可。
复杂度 \(\mathcal O(m\log^2n+n\log n)\)。
\(\mathcal{Code}\)
#include <cstdio>
const int MAXN = 1e5;
int n, m, a[MAXN + 5];
struct Event { int op, l, r; } evt[MAXN + 5];
inline int rint () {
int x = 0; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () );
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x;
}
struct SegmentTree {
int one[MAXN << 2], tag[MAXN << 2];
inline void pushup ( const int rt ) { one[rt] = one[rt << 1] + one[rt << 1 | 1]; }
inline void pushdn ( const int rt, const int len ) {
if ( ! ~ tag[rt] ) return ;
one[rt << 1] = tag[rt] * ( len + 1 >> 1 );
one[rt << 1 | 1] = tag[rt] * ( len >> 1 );
tag[rt << 1] = tag[rt << 1 | 1] = tag[rt];
tag[rt] = -1;
}
inline void build ( const int rt, const int l, const int r, const int thrval ) {
tag[rt] = -1;
if ( l == r ) return void ( one[rt] = a[l] >= thrval );
int mid = l + r >> 1;
build ( rt << 1, l, mid, thrval ), build ( rt << 1 | 1, mid + 1, r, thrval );
pushup ( rt );
}
inline void assign ( const int rt, const int l, const int r, const int al, const int ar, const int v ) {
if ( al > ar ) return ;
if ( al <= l && r <= ar ) return void ( one[rt] = ( tag[rt] = v ) * ( r - l + 1 ) );
int mid = l + r >> 1; pushdn ( rt, r - l + 1 );
if ( al <= mid ) assign ( rt << 1, l, mid, al, ar, v );
if ( mid < ar ) assign ( rt << 1 | 1, mid + 1, r, al, ar, v );
pushup ( rt );
}
inline int query ( const int rt, const int l, const int r, const int ql, const int qr ) {
if ( ql <= l && r <= qr ) return one[rt];
int mid = l + r >> 1, ret = 0; pushdn ( rt, r - l + 1 );
if ( ql <= mid ) ret += query ( rt << 1, l, mid, ql, qr );
if ( mid < qr ) ret += query ( rt << 1 | 1, mid + 1, r, ql, qr );
return ret;
}
} st;
int main () {
n = rint (), m = rint ();
for ( int i = 1; i <= n; ++ i ) a[i] = rint ();
for ( int i = 1; i <= m; ++ i ) {
evt[i].op = rint (), evt[i].l = rint (), evt[i].r = rint ();
}
int l = 1, r = n, q = rint ();
while ( l < r ) {
int mid = l + r + 1 >> 1;
st.build ( 1, 1, n, mid );
for ( int i = 1; i <= m; ++ i ) {
int el = evt[i].l, er = evt[i].r, t = st.query ( 1, 1, n, el, er );
if ( ! evt[i].op ) {
st.assign ( 1, 1, n, el, er - t, 0 );
st.assign ( 1, 1, n, er - t + 1, er, 1 );
} else {
st.assign ( 1, 1, n, el, el + t - 1, 1 );
st.assign ( 1, 1, n, el + t, er, 0 );
}
}
if ( st.query ( 1, 1, n, q, q ) ) l = mid;
else r = mid - 1;
}
printf ( "%d\n", l );
return 0;
}