Live2D

Solution -「CF 1119F」Niyaz and Small Degrees

\(\mathcal{Description}\)

  Link.

  给定一棵 \(n\) 个结点的树,边有边权,对于每个整数 \(x\in[0,n)\),求出最少的删边代价使得任意结点度数不超过 \(x\)

  \(n\le2.5\times10^5\)

\(\mathcal{Solution}\)

  从单个询问入手,设此时 \(x\) 为常数,就有一个简单的树上 DP。令 \(f(u,0/1)\) 表示 \(u\) 点与父亲的边不断 / 断时,\(u\) 子树内的最小代价。以 \(f(u,0)\) 为例,设 \(v\)\(u\) 的儿子,转移相当于强制选择至少 \(\max\{0,d_u-x\}\)\(f(v,1)\) 进行转移。先特判掉 \(f(v,1)+\operatorname{cost}(u,v)\le f(v,0)\)\(v\),此时用 \(f(v,1)+\operatorname{cost}(u,v)\) 的代价断边显然更优。此后,先仅用 \((v,0)\) 转移,把 \(f(v,1)+\operatorname{cost}(u,v)-f(v,0)\) 压入大根堆。保留堆最后 \(\max\{0,d_u-x\}\) 个元素并加入贡献就行啦。

  接下来,按 \(x\)\(0\)\(n-1\) 的顺序考虑询问。可以发现,在 \(x\) 增大的过程中,某些点的度数不超过 \(x\),那么 \(x\) 对这些点就再也没有限制了。那么强行把这个点拉到叶子,将它的 DP 信息压入邻接点的堆,再暴力跑 DP 就解决了。

  复杂度 \(\mathcal O(n\log n)\)

\(\mathcal{Code}\)

#pragma GCC optimize( 2 )

#include <queue>
#include <cstdio>
#include <vector>
#include <algorithm>

typedef long long LL;

const int MAXN = 2.5e5;
int n, ecnt, head[MAXN + 5], deg[MAXN + 5], vis[MAXN + 5];
LL f[MAXN + 5][2];
std::pair<int, int> order[MAXN + 5];
bool kill[MAXN + 5];

inline char fgc () {
	static char buf[1 << 17], *p = buf, *q = buf;
	return p == q && ( q = buf + fread ( p = buf, 1, 1 << 17, stdin ), p == q ) ? EOF : *p ++;
}

inline int rint () {
	int x = 0; char d = fgc ();
	for ( ; d < '0' || '9' < d; d = fgc () );
	for ( ; '0' <= d && d <= '9'; d = fgc () ) x = x * 10 + ( d ^ '0' );
	return x;
}

inline void wint ( const LL x ) {
	if ( 9 < x ) wint ( x / 10 );
	putchar ( x % 10 ^ '0' );
}

std::vector<LL> pmem, rmem;
std::vector<std::pair<int, int> > gr[MAXN + 5];

struct RemovableHeap {
	int siz; LL sum;
	std::priority_queue<LL> ele, rem;
	RemovableHeap (): siz ( 0 ), sum ( 0 ) {}
	inline void snap () { pmem.clear (), rmem.clear (); }
	inline void nspush ( const LL x ) { ++ siz, sum += x, ele.push ( x ); }
	inline void nspop ( const LL x ) { -- siz, sum -= x, rem.push ( x ); }
	inline void nspop () { -- siz, sum -= top (), ele.pop (); }
	inline void push ( const LL x ) { nspush ( x ), pmem.push_back ( x ); }
	inline void pop ( const LL x ) { nspop ( x ), rmem.push_back ( x ); }
	inline void pop () { -- siz, sum -= top (), rmem.push_back ( top () ), ele.pop (); }
	inline int size () { return siz; }
	inline LL top () {
		for ( ; ! ele.empty () && ! rem.empty () && ele.top () == rem.top (); ele.pop (), rem.pop () );
		return ele.top ();
	}
	inline void recov () {
		for ( LL p: pmem ) nspop ( p );
		for ( LL r: rmem ) nspush ( r );
		pmem.clear (), rmem.clear ();
	}
} heap[MAXN + 5];

inline void solve ( const int u, const int x, const int fa ) {
	vis[u] = x; int wait = deg[u] - x;
	for ( ; heap[u].size () > wait; heap[u].nspop () );
	for ( auto v: gr[u] ) {
		if ( v.first == fa ) continue;
		if ( deg[v.first] <= x ) break;
		solve ( v.first, x, u );
	}
	heap[u].snap ();
	LL bas = 0;
	for ( auto v: gr[u] ) {
		if ( v.first == fa ) continue;
		if ( deg[v.first] <= x ) break;
		LL dt = f[v.first][1] + v.second - f[v.first][0];
		if ( dt <= 0 ) { -- wait, bas += f[v.first][1] + v.second; continue; }
		bas += f[v.first][0], heap[u].push ( dt );
	}
	for ( ; heap[u].size () && heap[u].size () > wait; heap[u].pop () );
	f[u][0] = bas + heap[u].sum;
	for ( ; heap[u].size () && heap[u].size () > wait - 1; heap[u].pop () );
	f[u][1] = bas + heap[u].sum;
	heap[u].recov ();
}

int main () {
	n = rint ();
	LL ws = 0;
	for ( int i = 1, u, v, w; i < n; ++ i ) {
		u = rint (), v = rint (), w = rint ();
		++ deg[u], ++ deg[v], ws += w;
		gr[u].push_back ( { v, w } );
		gr[v].push_back ( { u, w } );
	}
	wint ( ws );
	for ( int i = 1; i <= n; ++ i ) {
		order[i] = { deg[i], i };
		sort ( gr[i].begin (), gr[i].end (),
			[]( const std::pair<int, int> a, const std::pair<int, int> b ) {
				return deg[a.first] > deg[b.first];
			}
		);
	}
	std::sort ( order + 1, order + n + 1 );
	for ( int x = 1, dis = 1; x < n; ++ x ) {
		for ( int u; dis <= n && order[dis].first == x; ++ dis ) {
			kill[u = order[dis].second] = true;
			for ( auto v: gr[u] ) {
				if ( deg[v.first] <= x ) break;
				heap[v.first].nspush ( v.second );
			}
		}
		LL ans = 0;
		for ( int i = dis, u; i <= n; ++ i ) {
			if ( vis[u = order[i].second] ^ x ) {
				solve ( u, x, 0 );
				ans += f[u][0];
			}
		}
		putchar ( ' ' ), wint ( ans );
	}
	putchar ( '\n' );
	return 0;
}
posted @ 2020-08-05 16:14  Rainybunny  阅读(142)  评论(0编辑  收藏  举报