Solution -「AGC 010C」「AT 2304」Cleaning
\(\mathcal{Description}\)
Link.
给定一棵 \(n\) 个点的无根树,点有点权,每次选择两个不同的叶子,使它们间的简单路径的所有点权 \(-1\),问能否将所有点权变成 \(0\)。
\(n\le10^5\)。
\(\mathcal{Solution}\)
这不就是我那道题的削弱版么 www。
考虑叶子 \(u\),显然有 \(val_u\) 条路径经过 \(u\)。DFS 回溯时考虑合并儿子们的路径。假设儿子们向上的路径共 \(s\) 条,单个儿子向上路径最多有 \(m\) 条;我们拿 \(a\) 对路径在当前结点 \(u\) 处匹配成完整路径,剩下 \(b\) 条继续向上,那么有:
\[\begin{cases}
a+b=val_u\\
2a+b=s\\
a\le\min\{\lfloor\frac{s}2\rfloor,s-m\}
\end{cases}
\]
解出 \(a,b\),判断是否合法即可。
\(\mathcal{Code}\)
#include <cstdio>
#include <cstdlib>
#include <iostream>
typedef long long LL;
const int MAXN = 1e5;
int n, ecnt, val[MAXN + 5], head[MAXN + 5], d[MAXN + 5];
struct Edge { int to, nxt; } graph[MAXN * 2 + 5];
inline void link ( const int s, const int t ) {
graph[++ ecnt] = { t, head[s] };
head[s] = ecnt;
}
inline int DFS ( const int u, const int f ) {
if ( d[u] == 1 ) return val[u];
LL sum = 0; int mx = 0;
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( ( v = graph[i].to ) ^ f ) {
int up = DFS ( v, u );
sum += up, mx = std::max ( mx, up );
}
}
if ( sum - val[u] > std::min ( sum >> 1, sum - mx )
|| 2 * val[u] < sum || sum < val[u] ) puts ( "NO" ), exit ( 0 );
return 2 * val[u] - sum;
// a+b=val, 2a+b=sum, a<=min{sum/2,sum-mx}
}
int main () {
scanf ( "%d", &n );
for ( int i = 1; i <= n; ++ i ) scanf ( "%d", &val[i] );
for ( int i = 1, u, v; i < n; ++ i ) {
scanf ( "%d %d", &u, &v ), ++ d[u], ++ d[v];
link ( u, v ), link ( v, u );
}
if ( n == 2 ) return puts ( val[1] == val[2] ? "YES" : "NO" ), 0;
for ( int i = 1; i <= n; ++ i ) if ( d[i] > 1 ) return puts ( DFS ( i, 0 ) ? "NO" : "YES" ), 0;
return 0;
}