Solution -「CF 555E」Case of Computer Network
\(\mathcal{Description}\)
Link.
给定 \(n\) 个点 \(m\) 条边的无向图,判断是否有给每条边定向的方案,使得 \(q\) 组有序点对 \((s,t)\) 都有 \(s\) 可达 \(t\)。
\(n,m,q\le2\times10^5\)。
\(\mathcal{Solution}\)
首先,对于原图中的边双,显然是可以让它们互相可达的,考虑把边双缩点。
此后,图变成了一片森林。单独考虑一棵树,从 \(s\) 到 \(t\) 的有向路径相当于规定了某些点连向父亲的边的方向。所以树上差分,在根上记录点对进入 / 走出子树的次数。若某个棵子树既有进入又有走出就肯定不合法啦。
\(\mathcal{Code}\)
#include <cstdio>
#include <cstdlib>
#include <assert.h>
#define adj( g, u, v ) \
for ( int i = g.head[u], v; v = g.to[i], i; i = g.nxt[i] )
#define NO() ( puts ( "NO" ), exit ( 0 ) )
const int MAXN = 2e5;
int n, m, q;
int dfc, dfn[MAXN + 5], low[MAXN + 5];
int cnt, bel[MAXN + 5], part, color[MAXN + 5];
int dep[MAXN + 5], fa[MAXN + 5][20], in[MAXN + 5], out[MAXN + 5];
bool cut[MAXN + 5], vis[MAXN + 5], chk[MAXN + 5];
struct Graph {
int ecnt, head[MAXN + 5], to[MAXN * 2 + 5], nxt[MAXN * 2 + 5];
Graph (): ecnt ( 1 ) {}
inline void link ( const int s, const int t ) {
to[++ ecnt] = t, nxt[ecnt] = head[s];
head[s] = ecnt;
}
} G, T;
inline void chkmin ( int& a, const int b ) { if ( b < a ) a = b; }
inline int rint () {
int x = 0; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () );
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x;
}
inline void Tarjan ( const int u, const int id ) {
dfn[u] = low[u] = ++ dfc;
adj ( G, u, v ) {
if ( ! dfn[v] ) {
Tarjan ( v, i ), chkmin ( low[u], low[v] );
if ( low[v] > dfn[u] ) cut[i >> 1] = true;
} else if ( i ^ id ^ 1 ) chkmin ( low[u], dfn[v] );
}
}
inline void mark ( const int u, const int col ) {
bel[u] = col, vis[u] = true;
adj ( G, u, v ) {
if ( ! cut[i >> 1] && ! vis[v] ) {
mark ( v, col );
}
}
}
inline void init ( const int u, const int f, const int c ) {
color[u] = c, dep[u] = dep[fa[u][0] = f] + 1;
for ( int i = 1; fa[u][i - 1]; ++ i ) fa[u][i] = fa[fa[u][i - 1]][i - 1];
adj ( T, u, v ) if ( v ^ f ) init ( v, u, c );
}
inline int calcLCA ( int u, int v ) {
assert ( color[u] == color[v] );
if ( dep[u] < dep[v] ) u ^= v ^= u ^= v;
for ( int i = 17; ~ i; -- i ) if ( dep[fa[u][i]] >= dep[v] ) u = fa[u][i];
if ( u == v ) return u;
for ( int i = 17; ~ i; -- i ) if ( fa[u][i] ^ fa[v][i] ) u = fa[u][i], v = fa[v][i];
return fa[u][0];
}
inline void check ( const int u, const int f ) {
chk[u] = true;
adj ( T, u, v ) if ( v ^ f ) {
check ( v, u );
if ( in[v] && out[v] ) NO ();
in[u] += in[v], out[u] += out[v];
}
}
int main () {
n = rint (), m = rint (), q = rint ();
for ( int i = 1, u, v; i <= m; ++ i ) {
u = rint (), v = rint ();
G.link ( u, v ), G.link ( v, u );
}
for ( int i = 1; i <= n; ++ i ) if ( ! dfn[i] ) Tarjan ( i, -1 );
for ( int i = 1; i <= n; ++ i ) if ( ! vis[i] ) mark ( i, ++ cnt );
for ( int u = 1; u <= n; ++ u ) {
adj ( G, u, v ) if ( cut[i >> 1] ) {
T.link ( bel[u], bel[v] );
}
}
for ( int i = 1; i <= cnt; ++ i ) if ( ! color[i] ) init ( i, 0, ++ part );
for ( int i = 1, s, t; i <= q; ++ i ) {
s = bel[rint ()], t = bel[rint ()];
if ( s == t ) continue;
if ( color[s] ^ color[t] ) NO ();
int w = calcLCA ( s, t );
++ out[s], -- out[w], ++ in[t], -- in[w];
}
for ( int i = 1; i <= n; ++ i ) if ( ! chk[i] ) check ( i, 0 );
puts ( "YES" );
return 0;
}