Live2D

Solution -「LOCAL」大括号树

Description

  OurTeam & OurOJ.

  给定一棵 n 个顶点的树,每个顶点标有字符 ()。将从 uv 的简单有向路径上的字符串成括号序列,记其正则匹配的子串个数为 ans(u,v)。求:

u=1nv=1nans(u,v)mod998244353

  n2×105

Solution

  可以先回忆一下括号树嗷。

  来看看链怎么做 owo,现有结点按 1n 从左到右编号,记 s(i,j) 表示从 ij 串成的括号序列。令 match(i) 为最大的 j<i,满足 s(j,i) 正则匹配。定义状态 f(i) 表示 s(1,i) 中,以 i 结尾的正则子串贡献。那么:

f(i)=f(match(i)1)+match(i)

  即,先保证最短的以 i 结尾的正则,起点就可以在前面任选了。而事实上,终点也能任选,那么答案为:

i=1nf(i)(ni+1)

  需要正反分别做一次嗷。


  那么,搬到树上,一个正则会贡献多少次呢?如图(混V的请告诉我背景是谁吖~):

1.png

  

  不难发现,(u,v)(或 (v,u))若正则匹配,则它对答案的贡献为 sizu×sizv

  好啦,开始 DSU on Tree 吧!

  注意到我们只关心一些子树大小的信息,所以这样设计状态:

  • f(u,i) 表示 u 子树内某一点 vu,构成的串有 i( 失配,且所有 ) 被匹配的 sizv 之和。
  • g(u,i) 表示 u 到其子树内某一点 v,构成的串有 i) 失配,且所有 ( 被匹配的 sizv 之和。

  好奇怪的定义 qwq,该怎样理解呢?

  考虑一条 vuw 的有向树链,其中 uvwLCA。若 vu 长成 (...((...(uw 长成 ...)...)...)),其中 ... 是已匹配的括号。可见 vuw 是正则匹配的,而这正对应了我们的状态 f(u,4)g(u,4)

  接着考虑轻重儿子信息对答案的贡献,如图:

2.png

  DFS 轻儿子的时候,用线段树动态维护前缀的 ),后缀的 ( 是否出现失配的情况,若一个点加入后不存在失配,则用 DP 信息更新答案。合并信息时类似,但加入最后一个点 u 时:

  • su='('f(u,i+1)=f(v,i)g(u,i1)=f(v,i)

  • su=')'f(u,i1)=f(v,i)g(u,i+1)=f(v,i)

  这……总不可能 O(siz) 地遍历第二维吧 qwq。事实上,发现这只是一个单纯的数组位移,初始时开两倍数组,用一个指针指向数组实际的 0 号为即可 O(1) 实现了。

  以上两幅配图来自 Lucky_Glass 的题解

Code

#include <cstdio>

const int MAXN = 2e5, MOD = 998244353;
int n, ecnt, head[MAXN + 5], siz[MAXN + 5], son[MAXN + 5];
int ans, aryf[MAXN * 2 + 5], aryg[MAXN * 2 + 5], *f, *g;
char s[MAXN + 5];

inline int add ( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
inline int sub ( int a, const int b ) { return ( a -= b ) < 0 ? a + MOD : a; }
inline int mul ( long long a, const int b ) { return ( a *= b ) < MOD ? a : a % MOD; }

inline int rint () {
	int x = 0; char s = getchar ();
	for ( ; s < '0' || '9' < s; s = getchar () );
	for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
	return x;
}

struct Edge { int to, nxt; } graph[MAXN + 5];

inline void link ( const int s, const int t ) {
	graph[++ ecnt] = { t, head[s] };
	head[s] = ecnt;
}

struct SegmentTree {
	int mn[MAXN * 2 + 5], tag[MAXN * 2 + 5];

	inline int id ( const int l, const int r ) { return ( l + r ) | ( l != r ); }
	inline void pushad ( const int l, const int r, const int v ) {
		int rt = id ( l, r );
		mn[rt] += v, tag[rt] += v;
	}
	inline void pushdn ( const int l, const int r ) {
		int rt = id ( l, r ), mid = l + r >> 1;
		if ( ! tag[rt] ) return ;
		pushad ( l, mid, tag[rt] ), pushad ( mid + 1, r, tag[rt] );
		tag[rt] = 0;
	}
	inline void pushup ( const int l, const int r ) {
		int rt = id ( l, r ), mid = l + r >> 1, lc = id ( l, mid ), rc = id ( mid + 1, r );
		mn[rt] = mn[lc] < mn[rc] ? mn[lc] : mn[rc];
	}
	inline void update ( const int l, const int r, const int ul, const int ur, const int v ) {
		if ( ul <= l && r <= ur ) return pushad ( l, r, v );
		int mid = l + r >> 1; pushdn ( l, r );
		if ( ul <= mid ) update ( l, mid, ul, ur, v );
		if ( mid < ur ) update ( mid + 1, r, ul, ur, v );
		pushup ( l, r );
	}
	inline bool check () { return mn[id ( 1, n )] >= 0; }
} preT, sufT; // ((... and ...)), preT->g, sufT->f.

inline void init ( const int u ) {
	siz[u] = 1;
	for ( int i = head[u], v; i; i = graph[i].nxt ) {
		init ( v = graph[i].to ), siz[u] += siz[v];
		if ( siz[son[u]] < siz[v] ) son[u] = v;
	}
}

inline void update ( const int u, const int dep, const int k ) {
	preT.update ( 1, n, 1, dep, s[u] == '(' ? k : -k );
	sufT.update ( 1, n, 1, dep, s[u] == ')' ? k : -k );
}

inline void calc ( const int u, int cnt, const int dep ) {
	cnt += s[u] == ')' ? 1 : -1, update ( u, dep, 1 );
	if ( sufT.check () ) ans = add ( ans, mul ( siz[u], f[cnt] ) );
	if ( preT.check () ) ans = add ( ans, mul ( siz[u], g[-cnt] ) );
	for ( int i = head[u]; i; i = graph[i].nxt ) calc ( graph[i].to, cnt, dep + 1 );
	update ( u, dep, -1 );
}

inline void coll ( const int u, int cnt, const int dep ) {
	cnt += s[u] == '(' ? 1 : -1, update ( u, dep, -1 );
	if ( sufT.check () ) f[cnt] = add ( f[cnt], siz[u] );
	if ( preT.check () ) g[-cnt] = add ( g[-cnt], siz[u] );
	for ( int i = head[u]; i; i = graph[i].nxt ) coll ( graph[i].to, cnt, dep + 1 );
	update ( u, dep, 1 );
}

inline void solve ( const int u, const bool keep ) {
	for ( int i = head[u], v; i; i = graph[i].nxt ) {
		if ( ( v = graph[i].to ) ^ son[u] ) {
			solve ( v, false );
		}
	}
	if ( son[u] ) solve ( son[u], true );
	if ( s[u] == '(' ) ans = add ( ans, mul ( g[1], n - siz[son[u]] ) );
	if ( s[u] == ')' ) ans = add ( ans, mul ( f[1], n - siz[son[u]] ) );
	for ( int i = head[u], v; i; i = graph[i].nxt ) {
		if ( ( v = graph[i].to ) ^ son[u] ) {
			*f = add ( *f, n - siz[v] ), g[0] = add ( *g, n - siz[v] );
			update ( u, 1, 1 );
			calc ( v, s[u] == ')' ? 1 : -1, 2 );
			*f = sub ( *f, n - siz[v] ), g[0] = sub ( *g, n - siz[v] );
			update ( u, 1, -1 );
			coll ( v, 0, 1 );
		}
	}
	if ( s[u] == '(' ) *f = add ( *f, siz[u] ), -- f, *g ++ = 0;
	if ( s[u] == ')' ) *g = add ( *g, siz[u] ), -- g, *f ++ = 0;
	if ( ! keep ) {
		for ( int i = 0; i <= siz[u]; ++ i ) f[i] = g[i] = 0;
		f = aryf + n, g = aryg + n;
	}
}

int main () {
	scanf ( "%d %s", &n, s + 1 );
	for ( int i = 2; i <= n; ++ i ) link ( rint (), i );
	init ( 1 );
	f = aryf + n, g = aryg + n;
	solve ( 1, true );
	printf ( "%d\n", ans );
	return 0;
}

Update

  然后你就发现……只需要维护前缀、后缀最大值,与当前前缀、后缀和比较就砍掉 log 了 owo!

#include <cstdio>

const int MAXN = 2e5, MOD = 998244353;
int n, ecnt, head[MAXN + 5], siz[MAXN + 5], son[MAXN + 5];
int ans, aryf[MAXN * 2 + 5], aryg[MAXN * 2 + 5], *f, *g;
char s[MAXN + 5];

inline int add ( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
inline int sub ( int a, const int b ) { return ( a -= b ) < 0 ? a + MOD : a; }
inline int mul ( long long a, const int b ) { return ( a *= b ) < MOD ? a : a % MOD; }
inline void chkmax ( int& a, const int b ) { if ( a < b ) a = b; }

inline int rint () {
	int x = 0; char s = getchar ();
	for ( ; s < '0' || '9' < s; s = getchar () );
	for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
	return x;
}

struct Edge { int to, nxt; } graph[MAXN + 5];

inline void link ( const int s, const int t ) {
	graph[++ ecnt] = { t, head[s] };
	head[s] = ecnt;
}

inline void init ( const int u ) {
	siz[u] = 1;
	for ( int i = head[u], v; i; i = graph[i].nxt ) {
		init ( v = graph[i].to ), siz[u] += siz[v];
		if ( siz[son[u]] < siz[v] ) son[u] = v;
	}
}

inline void calc ( const int u, int cnt, int pre, int suf ) {
	cnt += s[u] == ')' ? 1 : -1;
	chkmax ( pre, -cnt ), chkmax ( suf, cnt );
	if ( suf == cnt ) ans = add ( ans, mul ( siz[u], f[cnt] ) );
	if ( pre == -cnt ) ans = add ( ans, mul ( siz[u], g[-cnt] ) );
	for ( int i = head[u]; i; i = graph[i].nxt ) calc ( graph[i].to, cnt, pre, suf );
}

inline void coll ( const int u, int cnt, int pre, int suf ) {
	cnt += s[u] == '(' ? 1 : -1;
	chkmax ( pre, -cnt ), chkmax ( suf, cnt );
	if ( suf == cnt ) f[cnt] = add ( f[cnt], siz[u] );
	if ( pre == -cnt ) g[-cnt] = add ( g[-cnt], siz[u] );
	for ( int i = head[u]; i; i = graph[i].nxt ) coll ( graph[i].to, cnt, pre, suf );
}

inline void solve ( const int u, const bool keep ) {
	for ( int i = head[u], v; i; i = graph[i].nxt ) {
		if ( ( v = graph[i].to ) ^ son[u] ) {
			solve ( v, false );
		}
	}
	if ( son[u] ) solve ( son[u], true );
	if ( s[u] == '(' ) ans = add ( ans, mul ( g[1], n - siz[son[u]] ) );
	if ( s[u] == ')' ) ans = add ( ans, mul ( f[1], n - siz[son[u]] ) );
	int pre = s[u] == '(' ? 1 : -1, suf = s[u] == ')' ? 1 : -1;
	for ( int i = head[u], v; i; i = graph[i].nxt ) {
		if ( ( v = graph[i].to ) ^ son[u] ) {
			*f = add ( *f, n - siz[v] ), g[0] = add ( *g, n - siz[v] );
			calc ( v, s[u] == ')' ? 1 : -1, pre, suf );
			*f = sub ( *f, n - siz[v] ), g[0] = sub ( *g, n - siz[v] );
			coll ( v, 0, 0, 0 );
		}
	}
	if ( s[u] == '(' ) *f = add ( *f, siz[u] ), -- f, *g ++ = 0;
	if ( s[u] == ')' ) *g = add ( *g, siz[u] ), -- g, *f ++ = 0;
	if ( ! keep ) {
		for ( int i = 0; i <= siz[u]; ++ i ) f[i] = g[i] = 0;
		f = aryf + n, g = aryg + n;
	}
}

int main () {
	scanf ( "%d %s", &n, s + 1 );
	for ( int i = 2; i <= n; ++ i ) link ( rint (), i );
	init ( 1 );
	f = aryf + n, g = aryg + n;
	solve ( 1, true );
	printf ( "%d\n", ans );
	return 0;
}
posted @   Rainybunny  阅读(244)  评论(0编辑  收藏  举报
编辑推荐:
· AI与.NET技术实操系列:基于图像分类模型对图像进行分类
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
阅读排行:
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· ollama系列01:轻松3步本地部署deepseek,普通电脑可用
· 25岁的心里话
· 按钮权限的设计及实现
点击右上角即可分享
微信分享提示