Solution -「CF 623E」Transforming Sequence
题目
题意简述
link.
有一个 个元素的集合,你需要进行 次操作。每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集。求操作的方案数,对 取模。
数据规模
。
显然当 ,答案为 ,先特判掉。
首先列一个 naive 的 DP 方程,令 为前 次操作选出的集合并大小为 的方案数。易有:
那么答案为 。暴力 DP 是 的。不过很显然这个式子是一个卷积的形式。把它变一下形:
忽略毒瘤的模数,每次转移 NTT 就可以了,复杂度 。
这个 不太好优化。我们换一种形式,令 为前 次操作选出前 个元素的方案数。所以 。那么对于 ,有 。来考虑两层状态的合并:
理解一下:把 次操作和 个选出的元素分拆成两步完成:第一步选 个元素,第二步选 个。由于要在 里拿出 个给第一步(或说拿出 给第二步),所以有系数 。关键点在于 :在第一步中,我们已经选出了 个元素,所以在第二步的每次操作,都可以任意取 个元素的子集,故有系数 。
向卷积形式靠拢:
倍增处理 即可。复杂度 。
代码
这里用 MTT 实现任模 NTT。要特别留意每一步的取模嗷 qwq。
#include <cmath>
#include <cstdio>
#include <iostream>
typedef long long LL;
const int MAXN = 1 << 16, P = 1e9 + 7;
const double PI = acos ( -1 );
int n, m, len, lg, rev[MAXN + 5], fac[MAXN + 5], ifac[MAXN + 5], pwr[MAXN + 5];
int F[MAXN + 5], ans[MAXN + 5];
struct Complex {
double x, y;
Complex () {} Complex ( const double tx, const double ty ): x ( tx ), y ( ty ) {}
inline Complex operator + ( const Complex t ) const { return Complex ( x + t.x, y + t.y ); }
inline Complex operator - ( const Complex t ) const { return Complex ( x - t.x, y - t.y ); }
inline Complex operator * ( const Complex t ) const { return Complex ( x * t.x - y * t.y, x * t.y + y * t.x ); }
inline Complex operator / ( const double t ) const { return Complex ( x / t, y / t ); }
} omega[MAXN + 5];
inline void FFT ( const int n, Complex* A, const int tp ) {
for ( int i = 0; i < n; ++ i ) if ( i < rev[i] ) std::swap ( A[i], A[rev[i]] );
for ( int i = 2, stp = 1; i <= n; i <<= 1, stp <<= 1 ) {
for ( int j = 0; j < n; j += i ) {
for ( int k = 0; k < stp; ++ k ) {
Complex w ( omega[n / stp * k].x, tp * omega[n / stp * k].y );
Complex ev ( A[j + k] ), ov ( w * A[j + k + stp] );
A[j + k] = ev + ov, A[j + k + stp] = ev - ov;
}
}
}
if ( ! ~ tp ) for ( int i = 0; i < n; ++ i ) A[i] = A[i] / n;
}
inline void initFFT ( const int lg ) {
int n = 1 << lg;
for ( int i = 0; i < n; ++ i ) rev[i] = ( rev[i >> 1] >> 1 ) | ( ( i & 1 ) << lg >> 1 );
for ( int i = 1; i < n; i <<= 1 ) {
for ( int k = 0; k < i; ++ k ) {
omega[n / i * k] = Complex ( cos ( PI * k / i ), sin ( PI * k / i ) );
}
}
}
inline void polyConv ( const int n, const int* A, const int* B, int* C ) {
static Complex highA[MAXN + 5], highB[MAXN + 5], lowA[MAXN + 5], lowB[MAXN + 5];
for ( int i = 0; i < n; ++ i ) {
lowA[i].x = A[i] & 0x7fff, highA[i].x = A[i] >> 15;
lowB[i].x = B[i] & 0x7fff, highB[i].x = B[i] >> 15;
lowA[i].y = highA[i].y = lowB[i].y = highB[i].y = 0;
}
FFT ( n, lowA, 1 ), FFT ( n, highA, 1 ), FFT ( n, lowB, 1 ), FFT ( n, highB, 1 );
for ( int i = 0; i < n; ++ i ) {
Complex la ( lowA[i] ), ha ( highA[i] ), lb ( lowB[i] ), hb ( highB[i] );
lowA[i] = ha * hb, highA[i] = la * hb, lowB[i] = ha * lb, highB[i] = la * lb;
}
FFT ( n, lowA, -1 ), FFT ( n, highA, -1 ), FFT ( n, lowB, -1 ), FFT ( n, highB, -1 );
for ( int i = 0; i < n; ++ i ) {
C[i] = ( ( 1ll << 30 ) % P * ( LL ( round ( lowA[i].x ) ) % P ) % P
+ ( LL ( round ( highA[i].x ) ) % P << 15 ) % P
+ ( LL ( round ( lowB[i].x ) ) % P << 15 ) % P
+ ( LL ( round ( highB[i].x ) ) % P ) ) % P;
}
}
inline int qkpow ( int a, int b, const int p = P ) {
int ret = 1;
for ( ; b; a = 1ll * a * a % p, b >>= 1 ) ret = 1ll * ret * ( b & 1 ? a : 1 ) % p;
return ret;
}
inline void init ( const int n ) {
fac[0] = ifac[0] = pwr[0] = 1;
for ( int i = 1; i <= n; ++ i ) {
fac[i] = 1ll * i * fac[i - 1] % P;
pwr[i] = ( pwr[i - 1] << 1 ) % P;
}
ifac[n] = qkpow ( fac[n], P - 2 );
for ( int i = n - 1; i; -- i ) ifac[i] = ( i + 1ll ) * ifac[i + 1] % P;
}
inline void add ( const int fn, const int fm ) {
if ( ! fn ) {
for ( int i = 0; i <= n; ++ i ) ans[i] = F[i];
return ;
}
static int A[MAXN + 5], B[MAXN + 5];
for ( int i = 0; i <= n; ++ i ) {
A[i] = 1ll * ans[i] * ifac[i] % P * qkpow ( 2, 1ll * i * fm % ( P - 1 ) ) % P;
B[i] = 1ll * F[i] * ifac[i] % P;
}
for ( int i = n + 1; i < len; ++ i ) A[i] = B[i] = 0;
polyConv ( len, A, B, ans );
for ( int i = 0; i <= n; ++ i ) ans[i] = 1ll * ans[i] * fac[i] % P;
for ( int i = n + 1; i < len; ++ i ) ans[i] = 0;
}
inline void shift ( const int cur ) {
static int A[MAXN + 5], B[MAXN + 5];
for ( int i = 0; i <= n; ++ i ) {
A[i] = 1ll * F[i] * ifac[i] % P * qkpow ( 2, 1ll * i * cur % ( P - 1 ) ) % P;
B[i] = 1ll * F[i] * ifac[i] % P;
}
for ( int i = n + 1; i < len; ++ i ) A[i] = B[i] = 0;
polyConv ( len, A, B, F );
for ( int i = 0; i <= n; ++ i ) F[i] = 1ll * F[i] * fac[i] % P;
for ( int i = n + 1; i < len; ++ i ) F[i] = 0;
}
int main () {
scanf ( "%d %d", &m, &n );
if ( m > n ) return puts ( "0" ), 0;
len = 1, lg = 0;
for ( ; len <= n << 1; len <<= 1, ++ lg );
initFFT ( lg ), init ( n );
for ( int i = 1; i <= n; ++ i ) F[i] = 1;
for ( int i = 0, cur = 0; 1 << i <= m; ++ i ) {
if ( ( m >> i ) & 1 ) add ( cur, 1 << i ), cur |= 1 << i;
shift ( 1 << i );
}
int sum = 0;
for ( int i = 0; i <= n; ++ i ) {
sum = ( sum + 1ll * ans[i] * fac[n] % P * ifac[i] % P * ifac[n - i] ) % P;
}
printf ( "%d\n", sum );
return 0;
}
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:基于图像分类模型对图像进行分类
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· ollama系列01:轻松3步本地部署deepseek,普通电脑可用
· 25岁的心里话
· 按钮权限的设计及实现