Python NumPy使用

以下学习参考菜鸟教程https://www.runoob.com/numpy/numpy-advanced-indexing.html

1、一维(多维)数组

# -*- encoding=utf-8 -*-

import numpy


def f1():  # 一维数组
    print(numpy.array([1, 2, 3]))
    print(numpy.array(['1', '2', '3']))
    print(numpy.array(['a', 'b', 'c']))


def f2():  # 二维数组
    print(numpy.array([[1, 2, 3], [4, 5, 6]]))
    print(numpy.array([[1, 2, 3], ['a', 'b', 'c']]))


def f3():  # 指定最小维度
    print(numpy.array([1, 2, 3], ndmin=2))


def f4():  # 指定数据类型
    print(numpy.array([1, 2, 3], dtype=complex))#复数


if __name__ == '__main__':
    pass
    f1()
    f2()
    f3()
    f4()

运行

[1 2 3]
['1' '2' '3']
['a' 'b' 'c']
[[1 2 3]
 [4 5 6]]
[['1' '2' '3']
 ['a' 'b' 'c']]
[[1 2 3]]
[1.+0.j 2.+0.j 3.+0.j]

2、映射C语言中的结构体

# -*- encoding=utf-8 -*-

import numpy


def f1():
    pass
    print(numpy.dtype(numpy.int8))  # 8位int型,即字节型
    print(numpy.dtype(numpy.int16))  # 16位int型
    print(numpy.dtype(numpy.int32))  # 32位int型
    print(numpy.dtype(numpy.int64))  # 64位int型
    print(numpy.dtype(numpy.int_))  # 32或64位int型
    print(numpy.dtype('i1'))  # 对应int8
    print(numpy.dtype('i2'))  # 对应int16
    print(numpy.dtype('i4'))  # 对应int32
    print(numpy.dtype('i8'))  # 对应int64


def f2():
    dt = numpy.dtype([('age', numpy.int8)])  # 定义年龄age,类型是int8
    print(dt)
    data = numpy.array([[(10,), (20,), (30,)]], dtype=dt)  # 指定类型为age,int8型
    print(data)
    print(data['age'])  # 取出所有的age
    pass


def f3():
    # 定义学生结构体,姓名name String 20,年龄age int8,分数grade int16
    stu = numpy.dtype([('name', 'S20'), ('age', numpy.int8), ('grade', numpy.int16)])
    # 添加三个学生数据
    data = numpy.array([('xiao', 20, 80), ('hong', 21, 88), ('lan', 20, 90)], dtype=stu)
    print(data)
    print(data['name'])
    print(data['age'])
    print(data['grade'])
    print(type(data['grade']))
    pass


def f4():
    pass


if __name__ == '__main__':
    pass
    f1()
    f2()
    f3()
    f4()

运行

int8
int16
int32
int64
int32
int8
int16
int32
int64
[('age', 'i1')]
[[(10,) (20,) (30,)]]
[[10 20 30]]
[(b'xiao', 20, 80) (b'hong', 21, 88) (b'lan', 20, 90)]
[b'xiao' b'hong' b'lan']
[20 21 20]
[80 88 90]
<class 'numpy.ndarray'>

3、更改数组的行列数(例如2行3列变为3行二列,1行12列变为2行6列)

# -*- encoding=utf-8 -*-

import numpy


def f1():
    pass
    a = numpy.array([[2, 3, 1], [4.5, 5, 1], [2, 3, 1]])
    print(a)
    print(a.ndim)  # 表示维度,例如二维数组
    print(a.shape)  # 返回数组的行和列,例如3行3列


def f2():
    pass
    a = numpy.array([[2, 3, 1], [4.5, 5, 1]])
    print(a)
    print(a.ndim)  # 表示维度,
    print(a.shape)  # 原来是2行三列
    a.shape = (3, 2)  # 调整为3行两列
    print(a)
    print(a.shape)
    b = a.reshape(2, 3)  # 也可通过reshape调整
    print(b)
    print(b.shape)


def f3():
    pass
    '''itemsize 以字节的形式返回数组中每一个元素的大小。
    例如,一个元素类型为 float64 的数组 itemsiz 属性值为 8
    (float64 占用 64 个 bits,每个字节长度为 8,所以 64/8,占用 8 个字节),
    又如,一个元素类型为 complex32 的数组 item 属性为 4(32/8)。'''
    # 数组的 dtype 为 int8(一个字节)
    x = numpy.array([1, 2, 3, 4, 5], dtype=numpy.int8)
    print(x.itemsize)

    # 数组的 dtype 现在为 float64(八个字节)
    y = numpy.array([1, 2, 3, 4, 5], dtype=numpy.float64)
    print(y.itemsize)


def f4():
    pass


if __name__ == '__main__':
    pass
    f1()
    f2()
    f3()
    f4()

运行

[[2.  3.  1. ]
 [4.5 5.  1. ]
 [2.  3.  1. ]]
2
(3, 3)
[[2.  3.  1. ]
 [4.5 5.  1. ]]
2
(2, 3)
[[2.  3. ]
 [1.  4.5]
 [5.  1. ]]
(3, 2)
[[2.  3.  1. ]
 [4.5 5.  1. ]]
(2, 3)
1
8

4、创建数组


# -*- encoding=utf-8 -*-

import numpy


def f1():
pass
# 创建未初始化的数组
print(numpy.empty(3)) # 默认浮点型,未初始化,所以用随机数填充
# 使用arange创建
print(numpy.arange(0, 10, 2, dtype=float))


def f2():
pass
# 创建初始化为0的数组
a = numpy.zeros(shape=[2, 2], dtype=int) # 创建2行2列的int型数组,
print(a)
b = numpy.zeros(shape=[2, 3],
dtype=[('name', int), ('age', int), ('grade', int)]) # 创建2行3列的student型数组,
print(b)
# 创建初始化为1的数组
a = numpy.ones(shape=[2, 2], dtype=int) # 创建2行2列的int型数组,
print(a)
b = numpy.ones(shape=[2, 3],
dtype=[('name', int), ('age', int), ('grade', int)]) # 创建2行3列的student型数组,
print(b)


def f3():
pass
# 字符串转ndarray
my_str = b'hello world1'
a = numpy.frombuffer(my_str, dtype='S1')
print(a)
print(type(a))
print(a.shape) # 转为3维数组
a.shape = (3, 4)
print(a)


def f4():
pass


if __name__ == '__main__':
pass
f1()
f2()
f3()
f4()
 

运行

[0. 0. 0.]
[0. 2. 4. 6. 8.]
[[0 0]
[0 0]]
[[(0, 0, 0) (0, 0, 0) (0, 0, 0)]
[(0, 0, 0) (0, 0, 0) (0, 0, 0)]]
[[1 1]
[1 1]]
[[(1, 1, 1) (1, 1, 1) (1, 1, 1)]
[(1, 1, 1) (1, 1, 1) (1, 1, 1)]]
[b'h' b'e' b'l' b'l' b'o' b' ' b'w' b'o' b'r' b'l' b'd' b'1']
<class 'numpy.ndarray'>
(12,)
[[b'h' b'e' b'l' b'l']
[b'o' b' ' b'w' b'o']
[b'r' b'l' b'd' b'1']]

5、等比,等差数列

# -*- encoding=utf-8 -*-

import numpy


def f1():
    pass
    # 创建等差数列
    # linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None,axis=0)
    # 参数依次为起始值,终止值,需要的个数,是否包含终止值,是否显示间距,数据类型,
    a = numpy.linspace(1, 10, 5, )
    print(a)
    b = numpy.linspace(1, 10, 5, endpoint=False, retstep=True)  # 不包含终止值且显示步长
    print(b)


def f2():
    pass
    # 等比数列,默认log底数为10,起始值和终止值为底数的次方
    a = numpy.logspace(1, 2, 5, dtype=int)  # 定义由10-100的5个等比(10**1至10**2)
    print(a)
    # 定义由2-2的十次方的5个等比,设置底数为2(2**1至2**10)
    a = numpy.logspace(1, 10, 5, dtype=int, base=2)
    print(a)


def f3():
    pass


def f4():
    pass


if __name__ == '__main__':
    pass
    f1()
    f2()
    f3()
    f4()

运行

[ 1.    3.25  5.5   7.75 10.  ]
(array([1. , 2.8, 4.6, 6.4, 8.2]), 1.8)
[ 10  17  31  56 100]
[   2    9   45  215 1024]

6、切片(同string split一样)

# -*- encoding=utf-8 -*-

import numpy


def f1():
pass
a = numpy.array([0, 1, 2, 3, 4])
print(a[1:3]) # 切片和string spilt一样
print(a[0:5:2]) # 步长为2,从0切到5


def f2():
pass
a = numpy.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(a)
print(a.shape) # 3行3列
print(a[1, ...]) # 切第二行
print(a[1:]) # 第二行以及以后
print(a[..., 1]) # 切第二列
print(a[..., 1:]) # 切第二列以及以后


def f3():
pass
a = numpy.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(a[0, 0]) # 取0,0,
print(a[[0, 0, 2], [1, 2, 2]]) # 取0,1和0,2和2,2
print(a[[[0, 0], [2, 2]], [[0, 2], [0, 2]]]) # 0,0 0,2, 2,0, 2,2取四个角
# 可以看做是前一个list元素+后一个list元素


def f4():
pass
x = numpy.arange(32).reshape((8, 4))
print(x)
print(x[[4, 2, 1, 7]]) # 取1,2,4,7行
print((x[x > 5])) # 取元素大于5的


if __name__ == '__main__':
pass
f1()
f2()
f3()
f4()

运行

[1 2]
[0 2 4]
[[1 2 3]
[4 5 6]
[7 8 9]]
(3, 3)
[4 5 6]
[[4 5 6]
[7 8 9]]
[2 5 8]
[[2 3]
[5 6]
[8 9]]
1
[2 3 9]
[[1 3]
[7 9]]
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]
[12 13 14 15]
[16 17 18 19]
[20 21 22 23]
[24 25 26 27]
[28 29 30 31]]
[[16 17 18 19]
[ 8 9 10 11]
[ 4 5 6 7]
[28 29 30 31]]
[ 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
30 31]

7、一个散点图


# -*- encoding=utf-8 -*-

import numpy
import matplotlib.pyplot as plt

if __name__ == '__main__':
x = numpy.random.rand(10) # 随机十个横坐标
y = numpy.random.rand(10) # 随机十个纵坐标
plt.title('Title') # 设置标题
plt.xlabel('X') # 设置X轴标签
plt.ylabel('Y') # 设置Y轴标签
plt.xlim(-0.5, 1.5) # X轴范围
plt.ylim(0, 1) # Y轴范围
# s表示散点大小,c表示散点颜色,marker表示形状,alpha透明度,linewidths线宽
# s散点的大小,可以不一致大,列表等长度时对应每个坐标,即每个坐标可以不一样大
# size = [20, 100, 100, 50, 100, 100, 10, 100, 100, 100, ]
size = 20
# c颜色也是一样的,可以不同点不同的颜色
# color = ['yellow', 'pink','yellow', 'pink','yellow', 'pink','yellow', 'pink','yellow', 'pink',]
color = 'pink'
plt.scatter(x, y, s=size, c=color, marker='o', alpha=1, linewidths=10)
plt.legend('t') # 设置图标
plt.show() # 显示所画的图
 

运行

8、多个散点图

# -*- encoding=utf-8 -*-

import numpy
import matplotlib.pyplot as plt

if __name__ == '__main__':
    x = numpy.random.rand(10)  # 随机十个横坐标
    y = numpy.random.rand(10)  # 随机十个纵坐标
    fig = plt.figure()
    ax1 = fig.add_subplot(221)
    # 111表示占满该画布和一个散点图没区别,221表示占左上角222右上角223左下224右下
    ax1.set_title('one')  # 设置标题
    plt.xlabel('X')  # 设置X轴标签
    plt.ylabel('Y')  # 设置Y轴标签
    plt.xlim(-0.5, 1.5)  # X轴范围
    plt.ylim(0, 1)  # Y轴范围
    size = 20
    color = 'pink'
    ax1.scatter(x, y, s=size, c=color, marker='o', alpha=1, linewidths=10)
    plt.legend('t')  # 设置图标
    ax2 = fig.add_subplot(224)
    # 111表示占满该画布和一个散点图没区别,221表示占左上角222右上角223左下224右下
    ax2.set_title('two')  # 设置标题
    plt.xlabel('X--X')  # 设置X轴标签
    plt.ylabel('Y--Y')  # 设置Y轴标签
    plt.xlim(0, 1.5)  # X轴范围
    plt.ylim(-0.5, 1)  # Y轴范围
    ax2.scatter(x, y, s=100, c='yellow', marker='v', alpha=1,)
    plt.legend('TT')  # 设置图标
    plt.show()  # 显示所画的图

运行

 

posted @ 2020-07-20 13:59  南风丶轻语  阅读(175)  评论(0编辑  收藏  举报