大数据hadoop Linux 相关常用命令行操作

bin/zkServer.sh start

bin/zkServer.sh stop

启动Hadoop

1 hadoop102

sbin/start-dfs.sh

2 hadoop103

sbin/start-yarn.sh

1 hadoop103

sbin/stop-yarn.sh

2 hadoop102

sbin/stop-dfs.sh

启动Hbase

bin/hbase-daemon.sh start master

bin/hbase-daemon.sh start regionserver

bin/hbase-daemon.sh stop master

bin/hbase-daemon.sh stop regionserver

bin/start-hbase.sh

bin/stop-hbase.sh

软连接

ln -s /opt/module/hadoop-3.1.3/etc/hadoop/core-site.xml /opt/module/hbase131/conf/core-site.xml

ln -s /opt/module/hadoop-3.1.3/etc/hadoop/hdfs-site.xml /opt/module/hbase131/conf/hdfs-site.xml

 

Web端查看HDFS的NameNode

浏览器中输入:

http://hadoop102:9870

查看HDFS上存储的数据信息

Web端查看YARN的ResourceManager

浏览器中输入:

http://hadoop103:8088

查看YARN上运行的Job信息

 

查看JobHistory

历史服务器地址

http://hadoop102:19888/jobhistory

myhadoop.sh start

myhadoop.sh stop

jpsall

Group name: ddl

  Commands: alter, alter_async, alter_status, create, describe, disable, disable_all, drop, drop_all, enable, enable_all, exists, get_table, is_disabled, is_enabled, list, locate_region, show_filters

  Group name: dml

  Commands: append, count, delete, deleteall, get, get_counter, get_splits, incr, put, scan, truncate, truncate_preserve

  Group name: namespace

  Commands: alter_namespace, create_namespace, describe_namespace, drop_namespace, list_namespace, list_namespace_tables

 

2021-09-28T00:20:50.734899Z 1 [Note] A temporary password is generated for root@localhost: BMIzeYgW*6ef

初始化元数据

schematool -initSchema -dbType mysql –verbose

 

1、 数据导入,要求将CSV格式或者EXCEL格式的文件导入到HIVE数据仓库中;

2、数据汇总:在HIVE中执行SQL语言按照要求进行数据汇总;

3、数据可视化展示:将汇总结果导出到MySQL;

sqoop路径:/opt/module/sqoop

把指定文件放到hadoop指定路径:hadoop fs -put stu1.txt /user/hive/warehouse/stu

hive启动(/opt/module/hive):bin/hive

测试流程:

①hive路径下建表:test1

create table test1

(InvoiceNo String, StockCode String, Description String, Quantity String, InvoiceDate String, UnitPrice String, CustomerID String, Country String)

ROW format delimited fields terminated by ',' STORED AS TEXTFILE;

②导入数据:

load data local inpath '/opt/module/data/test.csv' into table test1;

select * from test1;

③进入mysql:mysql -uroot -p000000

(创建数据库命令:create database company;)

(进入对应数据库命令:use company;)

④将汇总结果导出到MySQL:

1.建表(可视化建表):

2.sqoop路径下:

bin/sqoop export \

> --connect jdbc:mysql://master:3306/mysql \

> --username root \

> --password 000000 \

> --table test1 \

> --num-mappers 1 \

> --export-dir /user/hive/warehouse/test1 \

> --input-fields-terminated-by ","

 

posted @   靠谱杨  阅读(126)  评论(0编辑  收藏  举报
编辑推荐:
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
阅读排行:
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· AI技术革命,工作效率10个最佳AI工具
历史上的今天:
2020-09-29 Java实现四则运算(一)

喜欢请打赏

扫描二维码打赏

了解更多

点击右上角即可分享
微信分享提示