【Kaggle】Spam/Ham Email Classification

基本思想

需求是对垃圾邮件进行分类。

思路1:使用LSTM、GRU等自带的时序模型进行分类。

思路2:使用spacy这个NLP库,里面的textcat可直接用来文本分类

实际上,思路2比思路1更优。由于是入门题,就只使用思路1了。

思路2代码参考:https://blog.csdn.net/qq_21201267/article/details/109109237

代码实现

读取数据

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# 忽略警告提示
import warnings
warnings.filterwarnings('ignore')
# 导入数据
# 训练数据集
trainf = open('train.csv',encoding='utf-8')
train_df =pd.read_csv(trainf)
# 测试数据集
testf = open('test.csv',encoding='utf-8')
test_df = pd.read_csv(testf)
print('训练数据集:',train_df.shape,"测试数据集:",test_df.shape)
train_df.head()

数据清洗

#数据清洗
train_df = train_df.fillna(" ")
test_df = test_df.fillna(" ")
print(np.sum(np.array(train_df.isnull()==True), axis=0))
print(np.sum(np.array(test_df.isnull()==True), axis=0))

from sklearn.model_selection import train_test_split
# 假设 X 包含特征,y 包含目标变量
X = train_df["subject"]+" "+train_df["email"]  # 使用你希望的特征列
y = train_df['spam']  # 用于预测的目标变量

# 将数据拆分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

#文本转token
from keras.preprocessing.text import Tokenizer
max_words = 300
tokenizer = Tokenizer(num_words=max_words, lower=True, split=' ')
# 只给频率最高的300个词分配 id,其他的忽略
tokenizer.fit_on_texts(list(X_train)+list(X_test)) # tokenizer 训练
X_train_tokens = tokenizer.texts_to_sequences(X_train)
X_test_tokens = tokenizer.texts_to_sequences(X_test)

# 样本 tokens 的长度不一样,pad
maxlen = 100
from keras.preprocessing import sequence
X_train_tokens_pad = sequence.pad_sequences(X_train_tokens, maxlen=maxlen,padding='post')
X_test_tokens_pad = sequence.pad_sequences(X_test_tokens, maxlen=maxlen,padding='post')

模型训练

#模型训练
embeddings_dim = 30 # 词嵌入向量维度
from keras.models import Model, Sequential
from keras.layers import Embedding, LSTM, GRU, SimpleRNN, Dense
model = Sequential()
model.add(Embedding(input_dim=max_words, # Size of the vocabulary
                    output_dim=embeddings_dim, # 词嵌入的维度
                    input_length=maxlen))
model.add(GRU(units=64)) # 可以改为 SimpleRNN , LSTM
model.add(Dense(units=1, activation='sigmoid'))
model.summary()

model.compile(optimizer='adam',
              loss='binary_crossentropy',
              metrics=['accuracy']) # 配置模型
history = model.fit(X_train_tokens_pad, y_train,
                    batch_size=128, epochs=10, validation_split=0.2)
model.save("email_cat_lstm.h5") # 保存训练好的模型

训练过程可视化

#训练过程可视化
from matplotlib import pyplot as plt
pd.DataFrame(history.history).plot(figsize=(8, 5))
plt.grid(True)
plt.show()

输出答案 

#输出答案
ansX=test_df["subject"]+" "+test_df["email"]  # 使用你希望的特征列

tokenizer.fit_on_texts(list(X_train)+list(X_test)) # tokenizer 训练
ans_tokens = tokenizer.texts_to_sequences(ansX)
ans_tokens_pad = sequence.pad_sequences(ans_tokens, maxlen=maxlen,padding='post')

pred_prob = model.predict(ans_tokens_pad).squeeze()
pred_class = np.asarray(pred_prob > 0.5).astype(np.int32)
id = test_df['id']
output = pd.DataFrame({'id':id, 'Class': pred_class})
output.to_csv("submission_gru.csv",  index=False)

  

 

 

 

 

posted @ 2023-10-16 17:15  byxiaobai  阅读(64)  评论(0编辑  收藏  举报