Unique Binary Search Trees

题目:

Given n, how many structurally unique BST's (binary search trees) that store values 1...n?

For example,
Given n = 3, there are a total of 5 unique BST's.

   1         3     3      2      1
    \       /     /      / \      \
     3     2     1      1   3      2
    /     /       \                 \
   2     1         2                 3

解析:

这题没想出来,问题的本质是动态规划,但在动态规划上还有一层维度

函数f(n),返回值为n个节点下二叉树共有多少个

 

0个节点:有1种情况,即空树   f(0)=1 

1个节点:有1种情况  f(1)=1

2个节点:有2种情况

  左0右1:f(0) * f(1) = 1

  左1右0:f(1) * f(0) = 1  

  f(2) = 1+1 = 2

3个节点:有3种情况

  左0右2:f(0) * f(2) = 2

  左1右1:f(1) * f(1) = 1

  左2右0:f(2) * f(0) = 2

  f(3) = 1+1+2 = 5

n个节点:共有n种情况

  左0右n-1:

  ……

  左n-1右0:

每一步都依赖于上一步的解决,只不过在处理前还要看有多少种情况 

 1 class Solution {
 2 public:
 3     int numTrees(int n) {
 4         vector<int> f(n + 1, 0);
 5         f[0] = 1;
 6         f[1] = 1;
 7         for (int i = 2; i <= n; ++i) {
 8             for (int k = 1; k <= i; ++k)
 9                 f[i] += f[k-1] * f[i - k];
10         }
11         return f[n];
12     }
13 };

 

posted on 2015-11-11 14:02  已停更  阅读(160)  评论(0编辑  收藏  举报